聊聊flink的ProcessFunction

栏目: Java · 发布时间: 6年前

内容简介:本文主要研究一下flink的ProcessFunctionflink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/ProcessFunction.java

本文主要研究一下flink的ProcessFunction

实例

import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.ProcessFunction.Context;
import org.apache.flink.streaming.api.functions.ProcessFunction.OnTimerContext;
import org.apache.flink.util.Collector;


// the source data stream
DataStream<Tuple2<String, String>> stream = ...;

// apply the process function onto a keyed stream
DataStream<Tuple2<String, Long>> result = stream
    .keyBy(0)
    .process(new CountWithTimeoutFunction());

/**
 * The data type stored in the state
 */
public class CountWithTimestamp {

    public String key;
    public long count;
    public long lastModified;
}

/**
 * The implementation of the ProcessFunction that maintains the count and timeouts
 */
public class CountWithTimeoutFunction extends ProcessFunction<Tuple2<String, String>, Tuple2<String, Long>> {

    /** The state that is maintained by this process function */
    private ValueState<CountWithTimestamp> state;

    @Override
    public void open(Configuration parameters) throws Exception {
        state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", CountWithTimestamp.class));
    }

    @Override
    public void processElement(Tuple2<String, String> value, Context ctx, Collector<Tuple2<String, Long>> out)
            throws Exception {

        // retrieve the current count
        CountWithTimestamp current = state.value();
        if (current == null) {
            current = new CountWithTimestamp();
            current.key = value.f0;
        }

        // update the state's count
        current.count++;

        // set the state's timestamp to the record's assigned event time timestamp
        current.lastModified = ctx.timestamp();

        // write the state back
        state.update(current);

        // schedule the next timer 60 seconds from the current event time
        ctx.timerService().registerEventTimeTimer(current.lastModified + 60000);
    }

    @Override
    public void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<String, Long>> out)
            throws Exception {

        // get the state for the key that scheduled the timer
        CountWithTimestamp result = state.value();

        // check if this is an outdated timer or the latest timer
        if (timestamp == result.lastModified + 60000) {
            // emit the state on timeout
            out.collect(new Tuple2<String, Long>(result.key, result.count));
        }
    }
}
  • 本实例展示了如何在ProcessFunction里头使用keyed state以及timer;process方法使用的ProcessFunction是CountWithTimeoutFunction
  • CountWithTimeoutFunction的open方法创建了CountWithTimestamp类型的ValueState;processElement方法里头会更新该ValueState,用于记录每个key的element个数以及最后访问时间,然后注册一个EventTimeTimer,在当前eventTime时间的60秒后到达
  • onTimer用于响应timer,它会判断如果该key在60秒内没有被update,则emit相关数据

ProcessFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/ProcessFunction.java

@PublicEvolving
public abstract class ProcessFunction<I, O> extends AbstractRichFunction {

    private static final long serialVersionUID = 1L;

    public abstract void processElement(I value, Context ctx, Collector<O> out) throws Exception;

    public void onTimer(long timestamp, OnTimerContext ctx, Collector<O> out) throws Exception {}

    public abstract class Context {

        public abstract Long timestamp();

        public abstract TimerService timerService();

        public abstract <X> void output(OutputTag<X> outputTag, X value);
    }

    public abstract class OnTimerContext extends Context {

        public abstract TimeDomain timeDomain();
    }

}
可以通过RuntimeContext获取keyed state

小结

可以通过RuntimeContext获取keyed state

doc


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Effective JavaScript

Effective JavaScript

David Herman / Addison-Wesley Professional / 2012-12-6 / USD 39.99

"It's uncommon to have a programming language wonk who can speak in such comfortable and friendly language as David does. His walk through the syntax and semantics of JavaScript is both charming and h......一起来看看 《Effective JavaScript》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换