NLTK学习笔记(五):分类和标注词汇

栏目: 编程工具 · 发布时间: 7年前

内容简介:NLTK学习笔记(五):分类和标注词汇

[TOC]

词性标注器

之后的很多工作都需要标注完的词汇。nltk自带英文标注器 pos_tag

import nltk
text = nltk.word_tokenize("And now for something compleyely difference")
print(text)
print(nltk.pos_tag(text))

标注语料库

表示已经标注的标识符: nltk.tag.str2tuple('word/类型')

text = "The/AT grand/JJ is/VBD ."
print([nltk.tag.str2tuple(t) for t in text.split()])

读取已经标注的语料库

nltk语料库ue肚脐提供了统一接口,可以不必理会不同的文件格式。格式: 语料库.tagged_word()/tagged_sents() 。参数可以指定categories和fields

print(nltk.corpus.brown.tagged_words())

名词、动词、形容词等

这里以名词为例

from nltk.corpus import brown
word_tag = nltk.FreqDist(brown.tagged_words(categories="news"))
print([word+'/'+tag for (word,tag)in word_tag if tag.startswith('V')])
################下面是查找money的不同标注#################################
wsj = brown.tagged_words(categories="news")
cfd = nltk.ConditionalFreqDist(wsj)
print(cfd['money'].keys())

尝试找出每个名词类型中最频繁的名词

def findtag(tag_prefix,tagged_text):
    cfd = nltk.ConditionalFreqDist((tag,word) for (word,tag) in tagged_text if tag.startswith(tag_prefix))
    return dict((tag,list(cfd[tag].keys())[:5]) for tag in cfd.conditions())#数据类型必须转换为list才能进行切片操作

tagdict = findtag('NN',nltk.corpus.brown.tagged_words(categories="news"))
for tag in sorted(tagdict):
    print(tag,tagdict[tag])

探索已经标注的语料库

需要 nltk.bigrams()nltk.trigrams() ,分别对应2-gram模型和3-gram模型。

brown_tagged = brown.tagged_words(categories="learned")
tags = [b[1] for (a,b) in nltk.bigrams(brown_tagged) if a[0]=="often"]
fd = nltk.FreqDist(tags)
fd.tabulate()

自动标注

默认标注器

最简单的标注器是为每个标识符分配统一标记。下面就是一个将所有词都变成NN的标注器。并且用 evaluate() 进行检验。当很多词语是名词时候,它有利于第一次分析并提高稳定性。

brown_tagged_sents = brown.tagged_sents(categories="news")

raw = 'I do not like eggs and ham, I do not like them Sam I am'
tokens = nltk.word_tokenize(raw)
default_tagger = nltk.DefaultTagger('NN')#创建标注器
print(default_tagger.tag(tokens)) # 调用tag()方法进行标注
print(default_tagger.evaluate(brown_tagged_sents))

正则表达式标注器

注意这里规则是固定(由自己决定)。当规则越来越完善的时候,精确度越高。

patterns = [
    (r'.*ing$','VBG'),
    (r'.*ed$','VBD'),
    (r'.*es$','VBZ'),
    (r'.*','NN')#为了方便,只有少量规则
]
regexp_tagger = nltk.RegexpTagger(patterns)
regexp_tagger.evaluate(brown_tagged_sents)

查询标注器

这里和书里是有差别的,不同于 python 2,注意调试。而查询标注器就是存储最有可能的标记,并且可以设置 backoff 参数,不能标记的情况下,就使用这个标注器(这个过程是 回退

fd = nltk.FreqDist(brown.words(categories="news"))
cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories="news"))
##############################################python2和3的区别#########
most_freq_words = fd.most_common(100)
likely_tags = dict((word,cfd[word].max()) for (word,times) in most_freq_words)
#######################################################################
baseline_tagger = nltk.UnigramTagger(model=likely_tags,backoff=nltk.DefaultTagger('NN'))
baseline_tagger.evaluate(brown_tagged_sents)

N-gram标注

基础的一元标注器

一元标注器的行为和查找标注器很相似,建立一元标注器的技术,为 训练

这里我们的标注器只是记忆训练集,而不是建立一般模型,那么吻合很好,但是不能推广到新文本。

size = int(len(brown_tagged_sents)*0.9)
train_sents = brown_tagged_sents[:size]
test_sents = brown_tagged_sents[size+1:]
unigram_tagger = nltk.UnigramTagger(train_sents)
unigram_tagger.evaluate(test_sents)

一般的N-gram标注器

N元标注器,就是检索index= n 的 word,并且检索n-N<=index<=n-1 的 tag。即通过前面词的tag标签,进一步确定当前词汇的tag。类似于 nltk.UnigramTagger() ,自带的二元标注器为: nltk.BigramTagger() 用法一致。

组合标注器

很多时候,覆盖范围更广的算法比精度更高的算法更有用。利用 backoff 指明 回退标注器 ,来实现标注器的组合。而参数 cutoff 显式声明为int型,则会自动丢弃只出现1-n次的上下文。

t0 = nltk.DefaultTagger('NN')
t1 = nltk.UnigramTagger(train_sents,backoff=t0)
t2 = nltk.BigramTagger(train_sents,backoff=t1)
t2.evaluate(test_sents)

可以发现,和原来比较之后,精确度明显提高

跨句子边界标注

对于句首的单词,没有前n个单词。解决方法:通过已标记的tagged_sents来训练标注器。

基于转换的标注:Brill标注器

较上面的都优秀。实现的思路:以大笔化开始,然后修复细节,一点点进行细致改变。

不仅占用内存小,而且关联上下文,并且根据问题的变小,实时修正错误,而不是一成不变的。当然,在python3和python2的调用有所不同。

from nltk.tag import brill
brill.nltkdemo18plus()
brill.nltkdemo18()

欢迎进一步交流本博文相关内容:

博客园地址 : http://www.cnblogs.com/AsuraDong/

CSDN地址 : http://blog.csdn.net/asuradong

也可以致信进行交流 : xiaochiyijiu@163.com

欢迎转载, 但 请指明出处  :  )


以上所述就是小编给大家介绍的《NLTK学习笔记(五):分类和标注词汇》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

触动人心

触动人心

Josh Clark / 包季真 / 电子工业出版社 / 2011-10 / 79.00元

本书是《Tapworthy: Designing Great iPhone Apps》的中文翻译版。 可能你设计网站产品或软件界面早已得心应手,可是遇到了iPhone,却感觉无从下手。 无论你是产品经理、设计师、创业者还是程序员,本书都能告诉你如何从iPhone的角度来思考应用设计。本书能帮助你理解如何设计iPhone应用,要创建一款触动人心的应用,需要如何去综合思考设计、心理、文化、......一起来看看 《触动人心》 这本书的介绍吧!

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具