机器翻译新突破:谷歌实现完全基于attention的翻译架构

栏目: 编程工具 · 发布时间: 8年前

内容简介:机器翻译新突破:谷歌实现完全基于attention的翻译架构

近两年来,机器翻译的突破让人目不暇接,从去年谷歌的颠覆性突破开始到一个月前 Facebook 的全新 CNN 翻译技术,人工智能的巴别塔正越建越高。近日,谷歌再次宣布又在机器翻译上更进了一步,实现了完全基于 attention 的 Transformer 机器翻译网络架构,并且还在 WMT 2014 的多种语言对的翻译任务上超越了之前 Facebook 的成绩,实现了新的最佳水平。机器之心对这篇研究论文进行了摘要介绍。

论文:Attention Is All You Need

论文链接:https://arxiv.org/abs/1706.03762

机器翻译新突破:谷歌实现完全基于attention的翻译架构

在编码器-解码器配置中,显性序列显性转导模型(dominant sequence transduction model)基于复杂的 RNN 或 CNN。表现最佳的模型也需通过注意力机制(attention mechanism)连接编码器和解码器。我们提出了一种新型的简单网络架构——Transformer,它完全基于注意力机制,彻底放弃了循环和卷积。两项机器翻译任务的实验表明,这些模型的翻译质量更优,同时更并行,所需训练时间也大大减少。我们的模型在 WMT 2014 英语转德语的翻译任务中取得了 BLEU 得分 28.4 的成绩,领先当前现有的最佳结果(包括集成模型)超过 2 个 BLEU 分值。WMT 2014 英语转法语翻译任务中,在 8 块 GPU 上训练了 3.5 天之后,我们的模型获得了新的单模型顶级 BLEU 得分 41.0,只是目前文献中最佳模型训练成本的一小部分。我们表明 Transformer 在其他任务上也泛化很好,把它成功应用到了有大量训练数据和有限训练数据的英语组别分析上。

机器翻译新突破:谷歌实现完全基于attention的翻译架构

图 1:转换器-模型架构

机器翻译新突破:谷歌实现完全基于attention的翻译架构

图 2:(左)可延展的 Dot-Product 注意,(右)Multi-Head 注意保护数并行运行的注意层

机器翻译新突破:谷歌实现完全基于attention的翻译架构

图 3:在 5、6 层编码器自注意中遵循长期依存关系的注意机制的例子。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

编程卓越之道

编程卓越之道

海德 / 张菲 / 电子工业出版社 / 2007-4 / 69.00元

《编程卓越之道第二卷:运用底层语言思想编写高级语言代码》是《编程卓越之道》系列书的第二卷,将探讨怎样用高级语言(而非汇编语言)编程得到高效率机器代码。在书中,您可以学到如何分析编译器的输出,以便检验代码的所作所为,从而得到高质量的机器码;了解编译器为常见控制结构生成的典型机器指令,以便在编写高级语言程序时选用恰当的语句;掌握编译器将各种常量和变量类型转换成机器数据的方法,以便于使用这些数据写出又快......一起来看看 《编程卓越之道》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试