内容简介:EasyML:让机器学习应用开发简单快捷
Easy Machine Learning
What is Easy Machine Learning
Machine learning algorithms have become the key components in many big data applications. However, the full potential of machine learning is still far from been realized because using machine learning algorithms is hard, especially on distributed platforms such as Hadoop and Spark. The key barriers come from not only the implementation of the algorithms themselves, but also the processing for applying them to real applications which often involve multiple steps and different algorithms.
Our platform Easy Machine Learning presents a general-purpose dataflow-based system for easing the process of applying machine learning algorithms to real world tasks. In the system a learning task is formulated as a directed acyclic graph (DAG) in which each node represents an operation (e.g. a machine learning algorithm), and each edge represents the flow of the data from one node to its descendants. The task can be defined manually or be cloned from existing tasks/templates. After submitting a task to the cloud, each node will be automatically scheduled to execute according to the DAG. Graphical user interface is implemented for making users to create, configure, submit, and monitor a task in a drag-and-drop manner. Advantages of the system include
-
Lowing the barriers of defining and executing machine learning tasks;
-
Sharing and re-using the implementations of the algorithms, the job DAGs, and the experimental results;
-
Seamlessly integrating the stand-alone algorithms as well as the distributed algorithms in one task.
The system consists of three major components:
- A distributed machine learning library which implements not only popular used machine learning algorithms, but also the algorithms for data pre/post-processing, data format transformation, feature generation, performance evaluation etc. These algorithms are mainly implemented based on Spark.
- A GUI-based machine learning studio system which enable users to create, configure, submit, monitor, and sharing their machine learning process in a drag-and-drop manner. All of the algorithms in the machine learning library can be accessed and configured in the studio system. They are the key building blocks for constructing machine learning tasks.
- A cloud service for executing the tasks. We build the service based on the open source big data platform of Hadoop and Spark. In order to build an platform, we organised a cluster of server on Docker . After receiving a task DAG from the GUI, each node will be automatically scheduled to run when all of its dependent data sources are ready. The algorithm corresponds to the node will scheduled to run on Linux, Spark, or Map-Reduce\cite, according to their implementation.
How to involve in our project
Pull all project and prepare some necessary environments and a kind of development utilities. Follows the step in Quick-start.md , and you can create our system in your computer.
How to use Easy Machine Learning Studio
After you have ran Easy ML,You can login via * http://localhost:18080/EMLStudio.html
*with our official account bdaict@hotmail.com
and password bdaict
. For the best user experience, it is recommended to use Chrome.
- As shown in the following figure, the users can create a machine learning task (a dataflow DAG) with the algorithms and data sets listed in the left panel of the page. They can choose to click the algorithms and data sets listed in the
Program
andData
panels. They can also click theJob
panel, select an existing task, clone it, and make necessary modifications. The users can configure the task information and parameter values of each node in the right panel. The nodes in the task could corresponds to either a stand-alone Linux program or a distributed program running on Spark or Hadoop Map-Reduce.
- The task is submitted to run on the cloud after clicking the
submit
button. The status of each node is indicated with different colors, as shown in the following figure.
- Users could right click on the
green output port
of finished executing node to preview the output data. One could check the stdout and stderr logs from the right click menu of each finished executing node as well. The users may check the outputs of a node by right clicking the corresponding output ports. The standard output and standard error information printed during the execution can be checked through right clicking the corresponding nodes and selects the menuShow STDOUT
andShow STDERR
.
- A finished (either success or not) task can be further modified and resubmitted to run, as shown in the following figure. Our system will only schedule the influenced nodes to run. The outputs of uninfluenced nodes are directly reused to save the running time and system resources.
- The users can upload their own algorithm packages and data sets for creating their own tasks or shared with other users. By clicking the
upload program
button, the popup window allows the users to specify the necessary information of the algorithm package, including the name, the category, the description, and the command line pattern string etc, as shown in the following figure. The most important thing is to write the command line pattern string with the predefined format. It defined the input ports, output ports, and parameter settings of a node. We developed a tool in the panel for helping users to write the command line string patterns. By clicking theupload data
button, users can upload a data set in the similar way as that of uploading a algorithms package.
Acknowledgements
The following people contributed to the development of the EasyML project:
- Jun Xu , Institute of Computing Technolgy, Chinese Academy of Sciences. Homepage: http://www.bigdatalab.ac.cn/~junxu
- Xiaohui Yan , Homepage: http://xiaohuiyan.github.io/
- Xinjie Chen , Institute of Computing Technolgy, Chinese Academy of Sciences
- Zhaohui Li , Institute of Computing Technolgy, Chinese Academy of Sciences
- Tianyou Guo , Institute of Computing Technolgy, Chinese Academy of Sciences
- Jianpeng Hou , Institute of Computing Technolgy, Chinese Academy of Sciences
- Ping Li , Institute of Computing Technolgy, Chinese Academy of Sciences
- Xueqi Cheng , Institute of Computing Technolgy, Chinese Academy of Sciences. Homepage: http://www.bigdatalab.ac.cn/~cxq/
以上所述就是小编给大家介绍的《EasyML:让机器学习应用开发简单快捷》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- [译] 机器学习与移动应用开发的未来
- MediaPipe:跨平台机器学习应用开发框架
- 开发金融应用场景,机器学习的技术短板在哪里?
- 中科院计算所开源Easy Machine Learning:让机器学习应用开发简单快捷
- 为开发AI本地化的移动应用,谷歌开源机器视觉神经网络MobileNets | 潮科技
- 应用开发的流程
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
JavaScript修炼之道
波顿纽威 / 巩朋、张铁 / 人民邮电 / 2011-11 / 29.00元
《JavaScript修炼之道》是JavaScript的实战秘籍。作者将自己多年的编程经验融入其中,不仅可以作为学习之用,更是日常JavaScript开发中不可多得的参考手册,使读者少走很多弯路。《JavaScript修炼之道》的内容涵盖了当今流行的JavaScript库的运行机制,也提供了许多应用案例。《JavaScript修炼之道》针对各任务采取对页式编排,在对各任务的讲解中,左页解释了任务的......一起来看看 《JavaScript修炼之道》 这本书的介绍吧!
HEX CMYK 转换工具
HEX CMYK 互转工具
HSV CMYK 转换工具
HSV CMYK互换工具