浪潮下,数据智能的组织变革和发展逻辑

栏目: 数据库 · 发布时间: 7年前

内容简介:浪潮下,数据智能的组织变革和发展逻辑

整个行业市场就是巨头引导的IaaS,PaaS,DaaS,TaaS,AaaS,MaaS各服务层加上各中小企业在应用层不断向其他行业渗透的过程。市场在不断的被瓜分和细化。大数据、云计算、人工智能互相交织,趋于一体。一根针捅破天的机会越来越少,AI产品落地、垂直领域的创新、AI组织变革,将是接下来的热点。

浪潮下,数据智能的组织变革和发展逻辑

AI(数据智能)技术的普及

浪潮下,数据智能的组织变革和发展逻辑

技术的发展有自己的规律,在不同阶段表现出不同的状态,发展的关键问题也不同。

技术的兴起阶段,技术本身的进步是发展的关键。此时往往是科研机构、高校或大型企业内部研究院开始进行前沿技术的研究。比如中国科学院大数据实验室、阿里人工智能实验室、上海大数据联盟等。

当技术发生了重大的突破,如AI的关键性技术突破,加上大数据和云计算技术提供了充足的数据和计算能力,使得AI迅速获得人们的关注。15年AlphaGo惊艳地表现像一个火种,整个行业市场开始有了燎原之势,风投、科技媒体开始逐渐关注。

随着而来的是大量的技术社区、技术布道者(技术培训等)和AI创业公司。好像当时的淘金热,创业公司是淘金者,技术布道者是渡船人。这一阶段,AI技术人员最为抢手。这时AI领域的垂直培训公司,如七月在线也风生水起,数据科学竞赛的平台kaggle、阿里天池大数据、datacastle也吸引力众多的技术人才。

当技术普及到达一定程度,技术能否真正的落地,去解决实际的问题则成为关键。这时候我们需要一批有着敏锐的市场需求并可以将技术落地的AI产品经理,技术开始渗透到各行各业,垂直细分领域的应用开始快速发展。各个领域应用的如电商销售、广告推荐系统、智能医疗等产生了大量的初创AI公司,而其背后,投资人关键的重点开始从技术本身变为能否解决实际的行业痛点。

然后,当技术发展趋于成熟,技术会导致生产生活关系、团队组织的变化。此时,一个团队能够适应性的改进自身,成为关键。比如回过头去看互联网发展的过程,从关注技术本身,到互联网应用,到企业互联网转型。AI技术也一样,技术本身会给团队的管理带来新的挑战。

当前AI(数据&智能)技术正处于技术普及的中后期,重点是技术的应用。在团队组织方面,我们试图寻找到一种新的合适的形式,来应对变化。

AI 组织变革

此处我们给出了一种组织架构,来应对这种变化。

浪潮下,数据智能的组织变革和发展逻辑

数据采集团队:

内部数据对企业来说更为关键,是实现数据驱动的基础。外部数据一种是对互联网和线下数据的采集,一种是通过数据交易市场来获取。内部数据的获取依赖企业内部的信息化,数据交易市场目前在国内已经趋于成熟,如数据堂、聚合数据、发源地等。企业可以根据自己需求决定团队的规模,团队技能包括网络爬虫、协议解析、数据清洗、数据对接等。

数据治理团队:

数据治理包括数据质量控制、元数据管理等。数据治理保证了数据可用、可控、可信。数据治理从本质上来讲是服务的角色,让数据加工过程透明化,让各个环节的数据使用者能够清楚的知道数据从何而来,经过了怎样的处理过程。比如一个人的消费明细是原始数据,处理够得到消费天统计表、月统计表,消费者行为爱好分析表。数据治理要做的就是掌握他们之间的来龙去脉,并展现给其他团队使用。

服务团队:

云计算的核心思想是“一切皆服务”,解放生产力,让企业可以专注在其最核心的领域内。AI赋能是核心部分。

  • DaaS 数据即服务: 以数据的采集与提供,为主要业务内容。相关技术包括ETL、流式数据处理、实时计算、异构数据解析、数据治理等。
  • TaaS 工具即服务: 将数据处理 工具 以服务的形式提供。相关服务包括清洗服务、转换服务、解析服务等。
  • AaaS 分析即服务: 以数据报告、可视化报表的形式提供服务。相关技术包括统计学、可视化技术等。
  • MaaS 挖掘即服务: 提供数据挖掘的核心能力服务。相关技术包括机器学习、深度学习、认知计算、模式识别等。

DAAS层的公司专注数据的交换,比如上文提到数据交易平台。一种是直接交换数据(数据堂),一种是以API的形式提供(聚合数据)。

TaaS专注于工具的服务,比如百度的预处理服务,将预处理的清洗、规约等过程封装成服务。该类服务类似给淘金者提供锤子、钉子等公司,让淘金者可以更方便的去挖金。

AaaS则专注于分析统计。比如阿里云数加提供的快速BI服务。传统情况下搭建一个销售数据分析系统,可能要一个月。而使用AaaS,只要一天。用户只要上传数据,数据处理逻辑基本是图像化操作,拖放控件,大大提高了效率。

MaaS指的是数据挖掘的核心能力,如阿里云提供的机器学习api、深度学习模型等,在这种情况下,如果要开发一个图片识别系统,只要了解其提供的接口即可,无需关心内部实现,存储和计算能力可以按需购买。这降低了技术门槛,使得AI更快的应用到其他行业。

应用团队:

从对数据的加工层次,包括检索查询、统计分析、业务模型、数据展现,需要深度结合领域知识。这里是更多中小创业者的机会所在。对初创企业来讲,数据的获取、数据的加工都可以使用云服务。而应用层,没有任何一家企业可以通吃。应用层是创新最频繁的地方,当然,也是竞争和死亡率最高的地方。

接下来,我们反观数据源、数据加工、数据治理、数据应用几个层面,来看下它们之间的发展逻辑。

数据智能的发展逻辑

浪潮下,数据智能的组织变革和发展逻辑

数据源的三个层次:

  1. 纬度较少、数据量小
  2. 纬度丰富、数据量巨大(大数据)。
  3. 数据正确、及时、具有代表性 样本数据=总体数据(全数据)。

对业务目标而言,数据是否“全”才是关键。

全数据:足以能够全面反映事物形态的数据集合。

全数据下,样本数据=总体数据,数据足够正确、足够新、足够代表性。

当期,虽然大数据量很大、纬度很多、处理速度极快、能够全量处理,但是大数据并没有解决“全”的问题。

例如, “小而全的数据” :对于一个餐饮店的菜品销售分析。其店内产生的数据(客户订单、菜品评价),数据量每天的新增量仅在每天2千条左右,而且只有订单和评价数据,存储数据库也是传统关系式数据库。对“店内菜品分析而言”

拥有这些数据已经够“全”,解决其业务问题。而更“大”的其他数据,对其没有贡献。

再如, “大而不全的数据” :对于信贷问题,要发现不可信人员。往往的思路是,试图通过对用户的线上行为、消费情况、以往银行记录进行识别判断。而现实情况却是,该类人群会刻意的回避“线上行为”,如盗用他人银行卡、民间高利贷等“线下行为”,这些隐蔽行为无法获取到。

数据处理技术的三个层次:

  1. 检索、查询
  2. 统计、分类技术、异常数据分析、关联性分析
  3. 趋势预测

数据管理的三个层次:

  1. 保证数据可用
  2. 保证数据可控
  3. 保证数据可信

首要问题是有数据可用,这在数据匮乏的“小数据”时代最为重要。

“大数据”时代则要防止数据迅速膨胀带来的数据失控问题,避免成为一堆大而乱的数据垃圾。

“全数据”强调的是,不盲目追求“大”,而是从业务应用的角度,保证数据的正确、及时。

数据价值的三个层次:

  1. 展示事物发展过程
  2. 描述事物发展本质
  3. 预测事物发展趋势

对事物的发展过程加以数字化的展现,使用分类、关联等技术发现事物发展过程中的规律、模式。

对事物的发展趋势加以预测。

数据源层次越高、处理技术层次越高、数据管理层次越高,带来的数据价值越大。

最后

综上,整个行业市场就是巨头引导的IaaS,PaaS,DaaS,TaaS,AaaS,MaaS各服务层加上各中小企业在应用层不断向其他行业渗透的过程。市场在不断的被瓜分和细化。大数据、云计算、人工智能互相交织,趋于一体。

一根针捅破天的机会越来越少,AI产品落地、垂直领域的创新、AI组织变革,将是接下来的热点。

作者:banglab

本文由 @banglab 原创发布于人人都是产品经理。未经许可,禁止转载。


以上所述就是小编给大家介绍的《浪潮下,数据智能的组织变革和发展逻辑》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

赛博空间的奥德赛

赛博空间的奥德赛

(荷兰)约斯·德·穆尔 (Jos de Mul) / 麦永雄 / 广西师范大学出版社 / 2007-2 / 38.00元

本书揭示了数码信息时代的电子传媒与赛博空间为人类历史的发展提供的新的可能性。本书第一部分“通向未来的高速公路”,涉及无线想象、政治技术和极权主义在赛博空间的消解等题旨;第二部分“赛博空间的想象” ,讨论空间文学探索简史、电影和文化的数码化;第三部分”可能的世界” ,关涉世界观的信息化、数码复制时代的世界、数码此在等层面;第四、五部分探讨主页时代的身份、虚拟人类学、虚拟多神论、赛博空间的进化、超人文......一起来看看 《赛博空间的奥德赛》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具