tensorflow keras 查找中间tensor并构建局部子图

栏目: 数据库 · 发布时间: 6年前

内容简介:在Mask_RCNN项目的示例项目此方法可以读取层的输出,对于输出多于1个tensor的,可以指定get_layer("rpn_class").output[0:2]等确定。但是对于自定义层的中间变量,就没办法获得了,因此需要使用方法二。

在Mask_RCNN项目的示例项目 nucleus 中,stepbystep步骤里面,需要对网络模型的中间变量进行提取和可视化,常见方式有两种:

通过 get_layer方法:

outputs = [
    ("rpn_class", model.keras_model.get_layer("rpn_class").output),
    ("proposals", model.keras_model.get_layer("ROI").output)
    ]

此方法可以读取层的输出,对于输出多于1个tensor的,可以指定get_layer("rpn_class").output[0:2]等确定。

但是对于自定义层的中间变量,就没办法获得了,因此需要使用方法二。

通过 tensor.op.inputs 逐层向上查找

定义一个迭代函数,不断查找

def find_in_tensor(tensor,name,index=0):
    index += 1
    if index >20:
        return
    tensor_parent = tensor.op.inputs
    for each_ptensor in tensor_parent:
        #print(each_ptensor.name)
        if bool(re.fullmatch(name, each_ptensor.name)):
            print('find it!')
            return each_ptensor
        result = find_in_tensor(each_ptensor,name,index)
        if result is not None:
            return result

接着获得某层的输出,调用迭代函数,找到该tensor

pillar = model.keras_model.get_layer("ROI").output
nms_rois = find_in_tensor(pillar,'ROI_3/rpn_non_max_suppression/NonMaxSuppressionV2:0')
outputs.append(('NonMaxSuppression',nms_rois))

最后,调用kf.fuction构建局部图,并运行:

submodel = model.keras_model
outputs = OrderedDict(outputs)
if submodel.uses_learning_phase and not isinstance(K.learning_phase(), int):
    inputs += [K.learning_phase()]
kf = K.function(submodel.inputs, list(outputs.values()))
in_p,ou_p = next(train_generator)
output_all = kf(in_p)

此时打印outputs可以看到类似如下:

OrderedDict([('rpn_class',<tf.Tensor 'rpn_class_3/concat:0' shape=(?, ?, 2) dtype=float32>),
             ('proposals',<tf.Tensor 'ROI_3/packed_2:0' shape=(1, ?, ?) dtype=float32>),
             ('fpn_p2',<tf.Tensor 'fpn_p2_3/BiasAdd:0' shape=(?, 192, 192, 256) dtype=float32>),
             ('fpn_p3',<tf.Tensor 'fpn_p3_3/BiasAdd:0' shape=(?, 96, 96, 256) dtype=float32>),
             ('fpn_p4',<tf.Tensor 'fpn_p4_3/BiasAdd:0' shape=(?, 48, 48, 256) dtype=float32>),
             ('fpn_p6',<tf.Tensor 'fpn_p6_3/MaxPool:0' shape=(?, 12, 12, 256) dtype=float32>),
             ('NonMaxSuppression',<tf.Tensor 'ROI_3/rpn_non_max_suppression/NonMaxSuppressionV2:0' shape=(?,) dtype=int32>)])

大功告成~


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

高可用MySQL

高可用MySQL

)Charles Bell Mats Kindahl Lars Thalmann / 宁青、唐李洋 诸云萍 / 电子工业出版社 / 2011-10 / 98.00元

《高可用mysql:构建健壮的数据中心》是“mysql high availability”的中文翻译版,主要讲解真实环境下如何使用mysql 的复制、集群和监控特性,揭示mysql 可靠性和高可用性的方方面面。本书由mysql 开发团队亲自执笔,定位于解决mysql 数据库的常见应用瓶颈,在保持mysql 的持续可用性的前提下,挖潜各种提高性能的解决方案。本书分为三个部分。第一部分讲述mysql......一起来看看 《高可用MySQL》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具