Golang 编译原理 计算器(通俗易懂)

栏目: Go · 发布时间: 5年前

内容简介:听到编译原理,就觉得很高大上。记得上大学时,这门课要记忆一些本文将用golang和编译原理的基本技术实现一个计算器。虽然功能简单,网上也有很多人做过类似事情,但这篇博客会有三个优点:整体会实现一个函数,输入一个

本文不需要你掌握任何编译原理的知识。 只需要看懂简单的golang语言即可, 完整的代码示例在 GIT

听到编译原理,就觉得很高大上。记得上大学时,这门课要记忆一些 BNF , LEX , AST , CFG 这些有的没的。一个听不懂,二个没兴趣。随着使用了几门语言之后,也尝试用编译原理的基本知识写过一个 sql 转es的 工具 之后。发现其实了解一点点编译原理的知识,能够提高我们的生产效率,做出一些很酷的小工具来。

本文将用golang和编译原理的基本技术实现一个计算器。虽然功能简单,网上也有很多人做过类似事情,但这篇博客会有三个优点:

  • 我暂时没有找到有人用golang写
  • 我会用最直白的语言去描述我们要做什么,这样当你阅读的时候,会发现该步骤和书中哪一步是对应的,帮助你更好的理解编译原理的知识。
  • 我会用 测试驱动 整个博客和代码,会让大家看到如何慢慢得演化出这个计算器得解释器。就像小说中人物的黑化有一个发酵的过程才会好看,我希望在本文中能够让读者看到一个解释器编写发酵的过程。

目标

整体会实现一个函数,输入一个 String , 输出一个 int64

// calc.go
func calc(input string) int64 {
}

而我们的终极目标是能够让我们的 calc 的方法能够通过以下的测试

// calc_test.go
func TestFinal(t *testing.T) {
    tests := []struct{
        input string
        expected int64
    }{
        {"5", 5},
        {"10", 10},
        {"-5", -5},
        {"-10", -10},
        {"5 + 5 + 5 + 5 - 10", 10},
        {"2 * 2 * 2 * 2 * 2", 32},
        {"-50 + 100 + -50", 0},
        {"5 * 2 + 10", 20},
        {"5 + 2 * 10", 25},
        {"20 + 2 * -10", 0},
        {"50 / 2 * 2 + 10", 60},
        {"2 * (5 + 10)", 30},
        {"3 * 3 * 3 + 10", 37},
        {"3 * (3 * 3) + 10", 37},
        {"(5 + 10 * 2 + 15 / 3) * 2 + -10", 50},
    }

    for _, tt := range tests{
        res := Calc(tt.input)
        if res != tt.expected{
            t.Errorf("Wrong answer, got=%d, want=%d", res, tt.expected)
        }
    }
}

我们运行这个测试,毫无疑问会失败。不过没关系,我们先把这个测试放到一边,我们从编译器最简单的开始。

把句子变成一个一个单词

首先我们注意到上面的测试中,我们包含多个字符。有 1-9 +-*/() ,并且 - 在数字前面表示这是一个负数。我们现在要做一个函数,将 input 的输入变成一个一个单词。那么一个计算输入有多少种单词呢?我们可以区分出以下几种。值得注意的是 EOF 表示结束, ILLEGAL 表示非法字符。

const (
    ILLEGAL = "ILLEGAL"
    EOF = "EOF"
    INT = "INT"

    PLUS = "+"
    MINUS = "-"
    BANG = "!"
    ASTERISK = "*"
    SLASH = "/"

    LPAREN = "("
    RPAREN = ")"
)

另外我们要设计一个读取字符器,更专业的名字叫做词法分析器。他的功能就是不断的读取每一个字符,然后生成我们的词元。注意我们有两个名词了,一个叫词元,一个叫词法分析器。我们都用结构体来描述他们。另外词法分析器的核心函数是 NextToken() 用于获取下一个词元。

type Token struct {
    Type string  //对应我们上面的词元类型
    Literal string // 实际的string字符
}

type Lexer struct {
    input string // 输入
    position int   // 当前位置                                                                                                                                                                                                                                                                                                                                                                                               
    readPosition int  // 将要读取的位置
    ch byte //当前字符
}

func (l *Lexer) NextToken() Token {
}

我们不着急实现。照例我们先设计我们的测试。这次我们要达到的目标是我们能够将句子分成特定的词元。

func TestTokenizer(t *testing.T) {
    input := `(5 + -10 * 2 + 15 / 3) * 2`
    tests := []struct {
        expectedType    string
        expectedLiteral string
    }{
        {LPAREN, "("},
        {INT, "5"},
        {PLUS, "+"},
        {MINUS, "-"},
        {INT, "10"},
        {ASTERISK, "*"},
        {INT, "2"},
        {PLUS, "+"},
        {INT, "15"},
        {SLASH, "/"},
        {INT, "3"},
        {RPAREN, ")"},
        {ASTERISK, "*"},
        {INT, "2"},
    }

    l := NewLex(input)

    for i, tt := range tests {
        tok := l.NextToken()

        if tok.Type != tt.expectedType {
            t.Fatalf("tests[%d] - tokentype wrong. expected=%q, got=%q",
                i, tt.expectedType, tok.Type)
        }

        if tok.Literal != tt.expectedLiteral {
            t.Fatalf("tests[%d] - literal wrong. expected=%q, got=%q",
                i, tt.expectedLiteral, tok.Literal)
        }
    }

}

ok , 为了通过这个测试。我们来实现 NextToken() 这个函数,首先构建几个辅助函数。

首先我们给 lexer 提供一个动作函数 readChar 。这个函数不断读取字符,并且更新结构体的值

func (l *Lexer) readChar() {
    if l.readPosition >= len(l.input) {
        l.ch = 0
    } else {
        l.ch = l.input[l.readPosition]
    }
    l.position = l.readPosition
    l.readPosition += 1
}

另外再来一个 skipWhitespace 用于在读取时候直接跳过空白字符

func (l *Lexer) skipWhitespace() {
    for l.ch == ' ' || l.ch == '\t' || l.ch == '\n' || l.ch == '\r' {
        l.readChar()
    }
}

其实我们读取词源挺简单的,除了像 123 这种几位数字,其他都是单个字符做一个词元。我们搞一个函数专门来读数字,不过我们先搞一个函数判断字符是不是数字,这里原理很简单,如果是数字不断读下一个,读到不是数字为止。

func isDigit(ch byte) bool {
    return '0' <= ch && ch <= '9'
}

func (l *Lexer) readNumber() string {
    position := l.position
    for isDigit(l.ch) {
        l.readChar()
    }
    return l.input[position:l.position]
}

好了。我们可以开始写 NextToken 这个核心函数啦。其实很简单,一个 switch 当前字符,针对不同字符返回不同的 Token 结构值

func (l *Lexer) NextToken() Token {
    var tok Token

    l.skipWhitespace()

    switch l.ch {
    case '(':
        tok = newToken(LPAREN, l.ch)
    case ')':
        tok = newToken(RPAREN, l.ch)
    case '+':
        tok = newToken(PLUS, l.ch)
    case '-':
        tok = newToken(MINUS, l.ch)
    case '/':
        tok = newToken(SLASH, l.ch)
    case '*':
        tok = newToken(ASTERISK, l.ch)
    case 0:
        tok.Literal = ""
        tok.Type = EOF
    default:
        if isDigit(l.ch) {
            tok.Type = INT
            tok.Literal = l.readNumber()
            return tok
        } else {
            tok = newToken(ILLEGAL, l.ch)
        }
    }

    l.readChar()
    return tok
}

OK. 在运行测试,测试就通过了,每个 input 都变成了每个词元。接下来我们要高出一个 ast 用于运行。

把一个一个词元组成语法树

什么是语法/语法树

首先语法到底是什么?比如说中文中 我爱你 主谓宾三种词表示一个意思,而必须按照 我爱你 这三个字顺序来表达,而不是用 爱你我 这种顺序来说。这个规则便是语法。而表达的意思便是如何告诉计算机你要干什么。

那什么是语法树呢?比如我们要计算机求 1 + 2 。你可以通过 1 + 2 这种中缀表达式写,或者是 + 12 这种前缀表达式来表达。但最后该语法的语言大概都会解析成一样的树

+
   /    \
   1    2

而这样的树就是语法树,表示源代码 1+2 或者 +12 的抽象语法结构。

那么计算表达式的语法是什么

首先我们定义两种情况。我们在有时候会见到这种语法 ++i 。也就是某个操作符作为前缀与后面数字发生反应。同样还包括我们的 -1 。同时还有一种更加常见的情况 1 + 2 。操作符在中间。另外我只是是填写一个数字类似于 12 。这也是一个计算表达式。 我们先把这三种情况都定义出来。

首先统一使用一个接口。

type Expression interface {
    String() string
}

这个接口没什么特别的含义。另外我们依据上面考虑的三种情况实现三个结构体,另外都实现了 String 方法。

type IntegerLiteralExpression struct {
    Token Token
    Value int64
}

func (il *IntegerLiteralExpression) String() string { return il.Token.Literal }

type PrefixExpression struct {
    Token    Token
    Operator string
    Right    Expression
}

func (pe *PrefixExpression) String() string {
    var out bytes.Buffer

    out.WriteString("(")
    out.WriteString(pe.Operator)
    out.WriteString(pe.Right.String())
    out.WriteString(")")

    return out.String()
}

type InfixExpression struct {
    Token    Token
    Left     Expression
    Operator string
    Right    Expression
}

func (ie *InfixExpression) String() string {
    var out bytes.Buffer

    out.WriteString("(")
    out.WriteString(ie.Left.String())
    out.WriteString(" ")
    out.WriteString(ie.Operator)
    out.WriteString(" ")
    out.WriteString(ie.Right.String())
    out.WriteString(")")

    return out.String()
}

解析器

我们定义完了上面几种expression情况。接下来用一个结构 parser 来把我们的字符串变成 expressionparser 里面包含我们上一步的 lexer 。以及存储error的数组。当前的词元和下一个词元。另外针对于上面提到的两种不同的expression。利用不同的处理方法。

type Parser struct {
    l *lexer.Lexer
    errors []string
    curToken token.Token
    peekToken token.Token
    prefixParseFns map[token.TokenType]prefixParseFn
    infixParseFns map[token.TokenType]infixParseFn
}

// 往结构体里面筛处理方法
func (p *Parser) registerPrefix(tokenType token.TokenType, fn prefixParseFn) {
  p.prefixParseFns[tokenType] = fn
}
func (p *Parser) registerInfix(tokenType token.TokenType, fn infixParseFn) {
  p.infixParseFns[tokenType] = fn
}

另外我们的核心函数是将 lexer 要变成 ast ,这个核心函数是 ParseExpression

func (p *Parser) ParseExpression(precedence int) Expression {
}

测试

好啦,准备工作已经做完了。那么开始写测试。我们刚才分析 计算表达式 只有三个语法。我们针对三个语法做三个简单测试

  1. 针对单个数字例如 250 ,我们进行以下测试。这个测试主要测试两个点,一个我们 ParseExpression 出来的是一个 InterLieralExpression 。另外一个这个 AST 节点的值为 250 。并且我们把 integerLiteral 的测试单独拿出来。之后可以服用
func TestIntegerLiteralExpression(t *testing.T) {
    input := "250"
    var expectValue int64 = 250

    l := NewLex(input)
    p := NewParser(l)


    checkParseErrors(t, p)
    expression := p.ParseExpression(LOWEST)
    testInterLiteral(t, expression, expectValue)
}

 
func testInterLiteral(t *testing.T, il Expression, value int64) bool {
    integ, ok := il.(*IntegerLiteralExpression)
    if !ok {
        t.Errorf("il not *ast.IntegerLiteral. got=%T", il)
        return false
    }

    if integ.Value != value {
        t.Errorf("integ.Value not %d. got=%d", value, integ.Value)
        return false
    }
    return true
}
  1. 针对前缀表达式例如 -250 , 我们进行一下测试. 这个测试主要测试两个点,一个我们 ParseExpression 出来的右值是 InterLieralExpression 。操作符是 -
func TestParsingPrefixExpression(t *testing.T) {
    input := "-15"
    expectedOp := "-"
    var expectedValue int64 =  15


    l := NewLex(input)
    p := NewParser(l)
    checkParseErrors(t, p)

    expression := p.ParseExpression(LOWEST)
    exp, ok := expression.(*PrefixExpression)

    if !ok {
        t.Fatalf("stmt is not PrefixExpression, got=%T", exp)
    }

    if exp.Operator != expectedOp {
        t.Fatalf("exp.Operator is not %s, go=%s", expectedOp, exp.Operator)
    }

    testInterLiteral(t, exp.Right, expectedValue)
}
  1. 对于中缀表达式如 5+5 ,进行如下测试,当然我们加减乘除都测试一遍
func TestParsingInfixExpression(t *testing.T) {
    infixTests := []struct{
        input string
        leftValue int64
        operator string
        rightValue int64
    }{
        {"5 + 5;", 5, "+", 5},
        {"5 - 5;", 5, "-", 5},
        {"5 * 5;", 5, "*", 5},
        {"5 / 5;", 5, "/", 5},
    }

    for _, tt := range infixTests {
        l := NewLex(tt.input)
        p := NewParser(l)
        checkParseErrors(t, p)

        expression := p.ParseExpression(LOWEST)
        exp, ok := expression.(*InfixExpression)

        if !ok {
            t.Fatalf("exp is not InfixExpression, got=%T", exp)
        }

        if exp.Operator != tt.operator {
            t.Fatalf("exp.Operator is not %s, go=%s", tt.operator, exp.Operator)
        }

        testInterLiteral(t, exp.Left, tt.leftValue)
        testInterLiteral(t, exp.Right, tt.rightValue)
    }
}

实现

上面测试写完了,我们就要开始实现了。首先想象一下,我们将input变成了一个一个的词元, 接下来我们对于一个又一个的词元进行处理。我们用到的算法叫做 pratt parser 。这里具体不展开来讲,有兴趣自己阅读。对于每一个词元,我们都有两个函数去处理她 infixParse 或者 prefixParse 。选择哪个函数取决于你在哪个位置。首先我们写一个初始化的函数 newParser

func NewParser(l *Lexer) *Parser {
    p := &Parser{
        l:      l,
        errors: []string{},
    }

    p.prefixParseFns = make(map[string]prefixParseFn)
    p.infixParseFns = make(map[string]infixParseFn)

    p.nextToken()
    p.nextToken()
    return p
}

当遇到Integer Token

考虑当我们遇到IntegerExpression时候,就是 250 这样当都一个字符。我们注册一下这种情况的处理函数 p.registerPrefix(INT, p.parseIntegerLiteral) 。 处理函数这里非常简单,我们直接返回一个 IntegerLiteralExpression

func (p *Parser) parseIntegerLiteral() Expression {

    lit := &IntegerLiteralExpression{Token: p.curToken}

    value, err := strconv.ParseInt(p.curToken.Literal, 0, 64)
    if err != nil {
        msg := fmt.Sprintf("could not parse %q as integer", p.curToken.Literal)
        p.errors = append(p.errors, msg)
        return nil
    }

    lit.Value = value
    return lit
}

// 在newParser里面加上

当遇到 +-*/ Token

我们支持 -5 这种形式。同时我们支持 5 -1 这种形式。我们在newParser里面注册两个处理函数。同样我们遇到 + * / 其他三个token。采用 parseInfixExpression

// func NewParser
    p.registerPrefix(MINUS, p.parsePrefixExpression)

    p.registerInfix(MINUS, p.parseInfixExpression)

    p.registerInfix(PLUS, p.parseInfixExpression)
    p.registerInfix(MINUS, p.parseInfixExpression)
    p.registerInfix(SLASH, p.parseInfixExpression)
    p.registerInfix(ASTERISK, p.parseInfixExpression)

如何实现 parsePrefixExpression 很简单,获取当前Token。也就是 - 。下一个TOken是数字。我们递归使用 ParseExpression 解析出来。不出错的话。这里解析出来的是一个 IntegerLiteral

func (p *Parser) parsePrefixExpression() Expression {

    expression := &PrefixExpression{
        Token:    p.curToken,
        Operator: p.curToken.Literal,
    }
    p.nextToken()
    expression.Right = p.ParseExpression(PREFIX)
    return expression
}

parseInfixExpression 差不多情况。但是有一个输入参数left。比如 1 + 21 就是left

func (p *Parser) parseInfixExpression(left Expression) Expression {

    expression := &InfixExpression{
        Token:    p.curToken,
        Operator: p.curToken.Literal,
        Left:     left,
    }

    precedence := p.curPrecedence()
    p.nextToken()

    expression.Right = p.ParseExpression(precedence)

    return expression
}

优先级

考虑这样一种情况 1 + 3 * 4 。如果解析成语法树。我们可以有两种解法

* 
         /      \
        +       4
      /    \
     1      3
+ 
         /      \
        1       *
               /    \
             3      4

按照我们小学教育,我们应该选择下面的解法。也就是说乘法比加法要有更高的优先级。或者说在我们的语法树中乘法要比加法处于更高的位置。我们定义出以下几个级别的优先级,与各符号对应的优先级

const (
    _ int = iota
    LOWEST
    SUM         // +, -
    PRODUCT     // *, /
    PREFIX      // -X
    CALL        // (X)
)

var precedences = map[string]int{
    PLUS:     SUM,
    MINUS:    SUM,
    SLASH:    PRODUCT,
    ASTERISK: PRODUCT,
    LPAREN:   CALL,
}

当遇到 ( ) Token

我们支持 (1 + 5) * 3 这种形式。这个时候我们强制提升了 1 + 5 的优先级。我们采用一个处理函数 parseGroupedExpression

// func NewParser
    p.registerPrefix(MINUS, p.parseGroupedExpression)

如何实现用 () 来提升优先级,其实就是强制读取 () 内的内容

func (p *Parser) parseGroupedExpression() Expression {
    p.nextToken()
    exp := p.ParseExpression(LOWEST)

    if !p.expectPeek(token.RPAREN){
        return nil
    }
    return exp
}

递归主函数 ParseExpression

我们通过当前优先级和下一个 token 的优先级进行对比,如果这个优先级比下一个优先级别低,那就变成infix。用 parseInfixExpression 处理。如果这个优先级等于或者比下一个优先级高,那就变成了prefix。用 parsePrefixExpression 处理

func (p *Parser) ParseExpression(precedence int) Expression {
    prefix := p.prefixParseFns[p.curToken.Type]
    returnExp := prefix()

    for precedence < p.peekPrecedence() {
        infix := p.infixParseFns[p.peekToken.Type]
        if infix == nil {
            return returnExp
        }

        p.nextToken()
        returnExp = infix(returnExp)
    }

    return returnExp
}

当然还有一些辅助函数,这里不再赘述。 运行一下测试,:ok:通过啦

执行语法树得到结果

这里我们直接要开始搞定我们最开始的测试啦。首先我们丰富一下主函数。

func Calc(input string) int64 {
    lexer := NewLex(input)
    parser := NewParser(lexer)

    exp := parser.ParseExpression(LOWEST)
    return Eval(exp)
}

关键就是我们的 Eval 函数啦。这里很简单,因为我们有三种 Expression 。对于不同的 Expression 做不同的处理方法

func Eval(exp Expression) int64 {
    switch node := exp.(type) {
    case *IntegerLiteralExpression:
        return node.Value
    case *PrefixExpression:
        rightV := Eval(node.Right)
        return evalPrefixExpression(node.Operator, rightV)
    case *InfixExpression:
        leftV := Eval(node.Left)
        rightV := Eval(node.Right)
        return evalInfixExpression(leftV, node.Operator, rightV)
    }

    return 0
}

func evalPrefixExpression(operator string, right int64) int64{
    if operator != "-" {
        return 0
    }
    return -right
}


func evalInfixExpression(left int64, operator string, right int64) int64 {

    switch operator {
    case "+":
        return left + right
    case "-":
        return left - right
    case "*":
        return left * right
    case "/":
        if right != 0{
            return left / right
        }else{
            return 0
        }
    default:
        return 0
    }
}

在运行一下测试,搞定。。。

总结

当然这里有很多东西没讲述,比如错误处理。但是我相信从上面走下来,比较容易理解编译原理的一些概念。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

金融数量分析

金融数量分析

郑志勇 / 北京航空航天大学出版社 / 2014-7-1 / CNY 58.00

《金融数量分析——基于MATLAB编程(第3版)》一书中的案例均来源于作者的工作实际,并充分体现“案例的实用性、程序的可模仿性”,程序中附有详细的注释。例如,投资组合管理、KMV模型计算、期权定价模型与数值方法、风险价值VaR的计算等案例程序,读者可以直接使用或根据需要在源代码的基础上修改、完善。 本书共23章。前两章分别对金融市场的基本概况与MATLAB的基础知识进行概述;接下来为20个金......一起来看看 《金融数量分析》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

MD5 加密
MD5 加密

MD5 加密工具