Python数据分析:matplotlib

栏目: Python · 发布时间: 5年前

内容简介:matplotlib是python中的一个数据可视化库,可以做出很多数据统计图,下面来说一说matplotlib的一些基本使用。1.首先引入和数据分析有关的库。2.然后使用pandas读入数据。

matplotlib是 python 中的一个数据可视化库,可以做出很多数据统计图,下面来说一说matplotlib的一些基本使用。

1.首先引入和数据分析有关的库。

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

2.然后使用pandas读入数据。

3. fig = plt.figure(figsize=(m,n)) :规定一个长为m,宽为n的画图区域。

4. plt.xlabel("") :规定横轴名称。

5. plt.ylabel("") :规定纵轴名称。

6. plt.title("") :规定图像名称。

7. plt.xticks(rotation=k) :将x轴的各标签旋转k度。

Python数据分析:matplotlib

8. plt.legend(loc="best) :添加图例,loc为图例的位置,传入best系统会自动寻找最佳的图例位置。下图为绘制五条折线。

fig = plt.figure(figsize=(10,7))    #规定绘图区域大小
color = ["green","cyan","yellow","red","black"]    #指定五条折线的颜色
plt.xlabel("Month")
plt.ylabel("Unemployment Rate")
plt.title("Unemployment Statics Trend,1948")
for i in range(5):
    x = i*12
    y = (i+1)*12
    subset = unrate[x:y]
    label = str(1948+i)
    plt.plot(subset["MONTH"],subset["VALUE"],c=color[i],label=label)
plt.legend(loc="best")    #添加图例到最佳显示位置
plt.show()

Python数据分析:matplotlib

9. fig.add_subplot() :添加子图绘制区域。

fig = plt.figure(figsize=(10,8))
ax1 = fig.add_subplot(2,2,1)    #指定子图位置
ax2 = fig.add_subplot(2,2,2)
ax3 = fig.add_subplot(2,2,3)
ax4 = fig.add_subplot(2,2,4)
plt.show()

Python数据分析:matplotlib

10. ax.set_xticks() :指定x轴绘图坐标。

11. ax.set_xticklabels() :指定x轴每个标签的名字。

12. ax.set_xlabel()ax.set_ylabel()ax.set_title() :分别指定x轴,y轴,图像名称。

num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']
bar_heights = norm_reviews.loc[0,num_cols].values
print(bar_heights)
bar_positions = np.arange(5)
print(bar_positions)
tick_positions = range(0,5)
fig,ax = plt.subplots(figsize=(10,8))    #用ax画图,fig控制区域
plt.bar(bar_positions,bar_heights,0.6)    #0.6表示所画条形图每个图形的宽度
ax.set_xticks(tick_positions)
ax.set_xticklabels(num_cols,rotation=45)
ax.set_xlabel("Rating Source")
ax.set_ylabel("Average Rating")
ax.set_title("Average User Rating For Avengers:Age of Ultron(2015)")
plt.show()

Python数据分析:matplotlib

13.如果要让条形图横着画,只需将绘制条形图的命令 plt.bar() 改为 plt.barh() ,如果有需要再重新指定一下自己所需的横纵坐标即可。

14. plt.scatter() :绘制散点图。

Python数据分析:matplotlib

15. plt.hist(x,bins=k,range=(m,n)) :绘制直方图,bins指定绘制出数据的条数,range()指定直方图横坐标的取值范围。

Python数据分析:matplotlib

16. ax.boxplot() :绘制盒形图,盒形图可以直观的观察出数据的离群点,也就是不符合规范的数据,具体到seaborn库时会讲。

Python数据分析:matplotlib


以上所述就是小编给大家介绍的《Python数据分析:matplotlib》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

你凭什么做好互联网

你凭什么做好互联网

曹政 / 中国友谊出版公司 / 2016-12 / 42.00元

为什么有人可以预见商机、超越景气,在不确定环境下表现更出色? 在规则之外,做好互联网,还有哪些关键秘诀? 当环境不给机会,你靠什么翻身? 本书为“互联网百晓生”曹政20多年互联网经验的总结,以严谨的逻辑思维分析个人与企业在互联网发展中的一些错误思想及做法,并给出正确解法。 从技术到商业如何实现,每个发展阶段需要匹配哪些能力、分解哪些目标、落实哪些策略都一一点出,并在......一起来看看 《你凭什么做好互联网》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具