如何计算Hill Cipher算法中的反密钥矩阵?

栏目: 编程工具 · 发布时间: 6年前

内容简介:我发现很难理解在Hill Cipher算法中计算矩阵的逆矩阵的方式.我知道这一切都是在模运算中完成的,但不知怎的,事情并没有加起来.我真的很感激一个简单的解释!考虑以下Hill Cipher密钥矩阵:请使用上面的矩阵进行说明.

我发现很难理解在Hill Cipher算法中计算矩阵的逆矩阵的方式.我知道这一切都是在模运算中完成的,但不知怎的,事情并没有加起来.我真的很感激一个简单的解释!

考虑以下Hill Cipher密钥矩阵:

请使用上面的矩阵进行说明.

您必须学习属于 Number TheoryLinear congruence theoremextended GCD algorithm ,以便了解 modulo arithmetic

背后的数学.

例如,矩阵K的逆是(1 / det(K))*伴随(K),其中det(K)<> 0.

我假设您不理解如何以模运算计算 1/det(K) ,这里是线性同余和GCD发挥作用的地方.

你的K有det(K)= – 121.让我们说模m是26.我们想要x *( – 121)= 1(mod 26).[a = b(mod m)意味着a-b = N * m]

我们可以很容易地发现,对于x = 3,上述同余是正确的,因为26精确地除(3 *( – 121)-1).当然,正确的方法是反向使用GCD来计算x,但我没有时间解释它是如何做的.检查扩展的GCD算法:)

现在,inv(K)= 3 *([3 -8],[ – 17 5])(mod 26)=([9-24],[ – 51 15])(mod 26)=([9 2] ,[1 15]).

更新:查看 Basics of Computational Number Theory 以了解如何使用Extended Euclidean算法计算模块化逆.注意-121 mod 26 = 9,因此对于gcd(9,26)= 1,我们得到(-1,3).

翻译自:https://stackoverflow.com/questions/960190/how-to-calculate-the-inverse-key-matrix-in-hill-cipher-algorithm


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

增长黑客

增长黑客

范冰 / 电子工业出版社 / 2015-7-1 / CNY 59.00

“增长黑客”这一概念近年来兴起于美国互联网创业圈,最早是由互联网创业者Sean Ellis提出。增长黑客是介于技术和市场之间的新型团队角色,主要依靠技术和数据的力量来达成各种营销目标,而非传统意义上靠砸钱来获取用户的市场推广角色。他们能从单线思维者时常忽略的角度和难以企及的高度通盘考虑影响产品发展的因素,提出基于产品本身的改造和开发策略,以切实的依据、低廉的成本、可控的风险来达成用户增长、活跃度上......一起来看看 《增长黑客》 这本书的介绍吧!

SHA 加密
SHA 加密

SHA 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具