内容简介:Simpfly implementation of Quantization Aware Training[1][2] with MXNet-scala module.Tested on Ubuntu 14.041, compile MXNet with CUDA, then compile the scala-pkg,doc:
MXNET-Scala TrainQuantization
Simpfly implementation of Quantization Aware Training[1][2] with MXNet-scala module.
Setup
Tested on Ubuntu 14.04
Requirements
- sbt 0.13 http://www.scala-sbt.org/
- Mxnet v1.4 https://github.com/dmlc/mxnet
Build steps
1, compile MXNet with CUDA, then compile the scala-pkg,doc: https://github.com/dmlc/mxnet/tree/master/scala-package
2, under the Mxnet-Scala/TrainQuantization folder:
mkdir lib; ln -s $MXNET_HOME/scala-package/assembly/linux-x86_64-gpu/target/mxnet-full_2.11-linux-x86_64-gpu-1.5.0-SNAPSHOT.jar lib
3, run sbt
and then compile the project
Train vgg on Cifar10
Using the script train_vgg16_cifar10.sh
under the scripts folder to train vgg from scratch on Cifar10:
FINETUNE_MODEL_EPOCH=-1 FINETUNE_MODEL_PREFIX=$ROOT/models/
Or you can finetune with the provided pretrain model:
FINETUNE_MODEL_EPOCH=46 FINETUNE_MODEL_PREFIX=$ROOT/models/cifar10_vgg16_acc_0.8772035
I did not use any data augmentation and carefully tune the hyper-parameters during training, the best accuracy I got was 0.877, worse than the best accracy 0.93 reported on Cifar10.
Train vgg with fake quantization on Cifar10
Using the script train_quantize_vgg16_cifar10.sh
under the scripts folder to train vgg with fake quantization on Cifar10,
you must provide the pretrained model:
FINETUNE_MODEL_EPOCH=46 FINETUNE_MODEL_PREFIX=$ROOT/models/cifar10_vgg16_acc_0.8772035
If everything goes right, you should get almost the same accuray with pretrained model after serveral epoch.
Test vgg with simulated quantization on Cifar10
Using the script test_quantize_vgg16_cifar10.sh
under the scripts folder to test pretrained fake quantization vgg with simulated quantization on Cifar10, you must provide the pretrained model:
FINETUNE_MODEL_EPOCH=57 FINETUNE_MODEL_PREFIX=$ROOT/models/cifar10_quantize_vgg16_acc_0.877504
Warning
Currently there is memory leak some where in the code, but I can't figure out the reason. You will see the memory usage keep increasing when you run the tranining script. So remenber to stop the traning script when memory usage is too high, and you can resume the training process with saved model previously.
Reference
[1] Quantizing deep convolutional networks for efficient inference: A whitepaper. https://arxiv.org/pdf/1806.08342.pdf
[2] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. https://arxiv.org/pdf/1712.05877.pdf
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Pytorch实现卷积神经网络训练量化(QAT)
- TensorFlow 模型优化工具包 — 训练后整型量化
- 【邢不行|量化小讲堂系列05-Python量化入门】计算创业板平均市盈率
- 量化交易的尬舞
- 抄底的艺术:量化交易之路
- 用R语言开始量化投资
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
黑客简史:棱镜中的帝国
刘创 / 电子工业出版社 / 2015-1 / 39.80元
“黑客”,伴随着计算机和互联网而诞生,他们掌握着前沿的计算机和网络技术,能够发现并利用计算机系统和网络的弱点,他们的行为动机多样,因此我们必须对这一群体进行分解,认识他们及其技术的两面性——“黑客”中那些不断拓展技术边界、富于创造力的,和那些掌握技术、却利欲熏心的,就像硬币的两面,谁都无法清晰地辨别是非。相对于主流文化,黑客的行为方式和理念等形成了一种“亚文化”,与主流文化相互作用。一起来看看 《黑客简史:棱镜中的帝国》 这本书的介绍吧!