MXNet 实现 TensorFlow 训练模拟量化方法

栏目: 数据库 · 发布时间: 6年前

内容简介:Simpfly implementation of Quantization Aware Training[1][2] with MXNet-scala module.Tested on Ubuntu 14.041, compile MXNet with CUDA, then compile the scala-pkg,doc:

MXNET-Scala TrainQuantization

Simpfly implementation of Quantization Aware Training[1][2] with MXNet-scala module.

Setup

Tested on Ubuntu 14.04

Requirements

Build steps

1, compile MXNet with CUDA, then compile the scala-pkg,doc: https://github.com/dmlc/mxnet/tree/master/scala-package

2, under the Mxnet-Scala/TrainQuantization folder:

mkdir lib;
 ln -s $MXNET_HOME/scala-package/assembly/linux-x86_64-gpu/target/mxnet-full_2.11-linux-x86_64-gpu-1.5.0-SNAPSHOT.jar lib

3, run sbt and then compile the project

Train vgg on Cifar10

Using the script train_vgg16_cifar10.sh under the scripts folder to train vgg from scratch on Cifar10:

FINETUNE_MODEL_EPOCH=-1
FINETUNE_MODEL_PREFIX=$ROOT/models/

Or you can finetune with the provided pretrain model:

FINETUNE_MODEL_EPOCH=46
FINETUNE_MODEL_PREFIX=$ROOT/models/cifar10_vgg16_acc_0.8772035

I did not use any data augmentation and carefully tune the hyper-parameters during training, the best accuracy I got was 0.877, worse than the best accracy 0.93 reported on Cifar10.

Train vgg with fake quantization on Cifar10

Using the script train_quantize_vgg16_cifar10.sh under the scripts folder to train vgg with fake quantization on Cifar10, you must provide the pretrained model:

FINETUNE_MODEL_EPOCH=46
FINETUNE_MODEL_PREFIX=$ROOT/models/cifar10_vgg16_acc_0.8772035

If everything goes right, you should get almost the same accuray with pretrained model after serveral epoch.

Test vgg with simulated quantization on Cifar10

Using the script test_quantize_vgg16_cifar10.sh under the scripts folder to test pretrained fake quantization vgg with simulated quantization on Cifar10, you must provide the pretrained model:

FINETUNE_MODEL_EPOCH=57
FINETUNE_MODEL_PREFIX=$ROOT/models/cifar10_quantize_vgg16_acc_0.877504

Warning

Currently there is memory leak some where in the code, but I can't figure out the reason. You will see the memory usage keep increasing when you run the tranining script. So remenber to stop the traning script when memory usage is too high, and you can resume the training process with saved model previously.

Reference

[1] Quantizing deep convolutional networks for efficient inference: A whitepaper. https://arxiv.org/pdf/1806.08342.pdf

[2] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. https://arxiv.org/pdf/1712.05877.pdf


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

妙趣横生的算法(C++语言实现)

妙趣横生的算法(C++语言实现)

胡浩 / 清华大学出版社 / 2014-10-1 / 59.80元

《妙趣横生的算法(C++语言实现)》内容丰富,生动有趣,寓教于乐,旨在帮助读者学习数据结构和算法的相关知识,从而开阔眼界,培养编程兴趣,提高编程能力,增强求职的竞争力。如果您想提高自己对算法和数据结构的理解能力,在程序设计之路上走得更远,那么请翻开《妙趣横生的算法(C++语言实现)》,仔细研读吧,它将助您一臂之力。 《妙趣横生的算法(C++语言实现)》以通俗易懂的语言深入浅出地介绍了常用的数......一起来看看 《妙趣横生的算法(C++语言实现)》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

SHA 加密
SHA 加密

SHA 加密工具