Python TfidfVectorizer throw:空词汇;也许文件只包含停用词“

栏目: Python · 发布时间: 5年前

内容简介:翻译自:https://stackoverflow.com/questions/20928769/python-tfidfvectorizer-throwing-empty-vocabulary-perhaps-the-documents-only-c

我正在尝试使用 Python 的Tfidf来转换文本语料库.

但是,当我尝试fit_transform它时,我得到一个值错误ValueError:空词汇;也许这些文件只包含停用词.

In [69]: TfidfVectorizer().fit_transform(smallcorp)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-69-ac16344f3129> in <module>()
----> 1 TfidfVectorizer().fit_transform(smallcorp)

/Users/maxsong/anaconda/lib/python2.7/site-packages/sklearn/feature_extraction/text.pyc in fit_transform(self, raw_documents, y)
   1217         vectors : array, [n_samples, n_features]
   1218         """
-> 1219         X = super(TfidfVectorizer, self).fit_transform(raw_documents)
   1220         self._tfidf.fit(X)
   1221         # X is already a transformed view of raw_documents so

/Users/maxsong/anaconda/lib/python2.7/site-packages/sklearn/feature_extraction/text.pyc in fit_transform(self, raw_documents, y)
    778         max_features = self.max_features
    779 
--> 780         vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary)
    781         X = X.tocsc()
    782 

/Users/maxsong/anaconda/lib/python2.7/site-packages/sklearn/feature_extraction/text.pyc in _count_vocab(self, raw_documents, fixed_vocab)
    725             vocabulary = dict(vocabulary)
    726             if not vocabulary:
--> 727                 raise ValueError("empty vocabulary; perhaps the documents only"
    728                                  " contain stop words")
    729 

ValueError: empty vocabulary; perhaps the documents only contain stop words

我在这里阅读了SO问题: Problems using a custom vocabulary for TfidfVectorizer scikit-learn 并尝试了ogrisel建议使用TfidfVectorizer(** params).build_analyzer()(dataset2)来检查文本分析步骤的结果,这似乎按预期工作:下面的代码段:

In [68]: TfidfVectorizer().build_analyzer()(smallcorp)
Out[68]: 
[u'due',
 u'to',
 u'lack',
 u'of',
 u'personal',
 u'biggest',
 u'education',
 u'and',
 u'husband',
 u'to',

还有别的我做错了吗?我正在喂它的语料库只是一条由换行符打断的巨大长串.

谢谢!

我想这是因为你只有一个字符串.尝试将其拆分为字符串列表,例如:
In [51]: smallcorp
Out[51]: 'Ah! Now I have done Philosophy,\nI have finished Law and Medicine,\nAnd sadly even Theology:\nTaken fierce pains, from end to end.\nNow here I am, a fool for sure!\nNo wiser than I was before:'

In [52]: tf = TfidfVectorizer()

In [53]: tf.fit_transform(smallcorp.split('\n'))
Out[53]: 
<6x28 sparse matrix of type '<type 'numpy.float64'>'
    with 31 stored elements in Compressed Sparse Row format>

翻译自:https://stackoverflow.com/questions/20928769/python-tfidfvectorizer-throwing-empty-vocabulary-perhaps-the-documents-only-c


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

技术元素

技术元素

[美] 凯文·凯利 / 张行舟、余倩、周峰、管策、金鑫、曾丹阳、李远、袁璐 / 译言·东西文库/电子工业出版社 / 2012-5 / 55.00元

我会将我不成熟的想法、笔记、内心争论、草稿以及对其他文章的回应都写在《技术元素》中,这样我就能知道自己到底在想些什么。——KK “技术元素”(technium)是凯文•凯利专门创造出来的词语。“技术元素不仅仅包括一些具象的技术(例如汽车、雷达和计算机等),它还包括文化、 法律、社会机构和所有的智能创造物。”简而言之,技术元素就是从人的意识中涌现出来的一切。KK把这种科技的延伸面看成一个能产生......一起来看看 《技术元素》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

MD5 加密
MD5 加密

MD5 加密工具