数学 – 任何人都可以告诉我为什么我们总是在机器学习中使用高斯分布?

栏目: 数据库 · 发布时间: 5年前

内容简介:你从数学思想的人那里得到的答案是“因为中心极限定理”.这表达了这样的想法:当你从几乎任何分布*中取出一堆随机数并将它们加在一起时,你会获得大致正态分布的东西.您添加的数字越多,它获得的正常分布就越多.我可以在Matlab / Octave中演示这个.如果我在1到10之间生成1000个随机数并绘制直方图,我会得到类似的结果如果不是生成一个随机数,而是生成其中的12个并将它们加在一起,并执行1000次并绘制直方图,我得到这样的结果:

你从数学思想的人那里得到的答案是“因为中心极限定理”.这表达了这样的想法:当你从几乎任何分布*中取出一堆随机数并将它们加在一起时,你会获得大致正态分布的东西.您添加的数字越多,它获得的正常分布就越多.

我可以在Matlab / Octave中演示这个.如果我在1到10之间生成1000个随机数并绘制直方图,我会得到类似的结果

如果不是生成一个随机数,而是生成其中的12个并将它们加在一起,并执行1000次并绘制直方图,我得到这样的结果:

我已经在顶部绘制了具有相同均值和方差的正态分布,因此您可以了解匹配的接近程度.你可以看到我用来生成这些图 at this gist 的代码.

在典型的机器学习问题中,您将遇到来自许多不同来源的错误(例如测量错误,数据输入错误,分类错误,数据损坏……)并且认为所有这些错误的综合影响大致是不合理的正常(当然,你应该经常检查!)

这个问题的更实用的答案包括:

>因为它使数学更简单.正态分布的概率密度函数是二次方的指数.取对数(就像你经常做的那样,因为你想最大化对数似然)给你一个二次方.区分这个(找到最大值)可以得到一组线性方程,这些方程很容易通过分析求解.

>这很简单 – 整个分布用两个数字来描述,即均值和方差.

>大多数人都会熟悉您的代码/论文/报告.

这通常是一个很好的起点.如果您发现您的分配假设给您的表现不佳,那么也许您可以尝试不同的分布.但您应该首先考虑其他方法来改善模型的性能.

*技术要点 – 它需要有限的方差.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

结网

结网

王坚 / 人民邮电出版社 / 2010-4 / 55.00元

本书作者一直从事互联网产品的研究和实战,经验丰富,同时作为导师,指导了大量优秀的产品经理,本书的内容也是作者8年来培养产品经理新兵的经验集萃。如果你缺乏培养产品经理的教材,本书正好总结了产品经理知识体系,无疑是你很好的选择。 本书覆盖了相当全面的互联网知识,对于想要了解互联网行业或想要借助互联网进行营销的人来说,都是很好的入门读物。 本书并不是一本完善的互联网创业指南,而是写给胸怀互联......一起来看看 《结网》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具