数学 – 任何人都可以告诉我为什么我们总是在机器学习中使用高斯分布?

栏目: 数据库 · 发布时间: 5年前

内容简介:你从数学思想的人那里得到的答案是“因为中心极限定理”.这表达了这样的想法:当你从几乎任何分布*中取出一堆随机数并将它们加在一起时,你会获得大致正态分布的东西.您添加的数字越多,它获得的正常分布就越多.我可以在Matlab / Octave中演示这个.如果我在1到10之间生成1000个随机数并绘制直方图,我会得到类似的结果如果不是生成一个随机数,而是生成其中的12个并将它们加在一起,并执行1000次并绘制直方图,我得到这样的结果:

你从数学思想的人那里得到的答案是“因为中心极限定理”.这表达了这样的想法:当你从几乎任何分布*中取出一堆随机数并将它们加在一起时,你会获得大致正态分布的东西.您添加的数字越多,它获得的正常分布就越多.

我可以在Matlab / Octave中演示这个.如果我在1到10之间生成1000个随机数并绘制直方图,我会得到类似的结果

如果不是生成一个随机数,而是生成其中的12个并将它们加在一起,并执行1000次并绘制直方图,我得到这样的结果:

我已经在顶部绘制了具有相同均值和方差的正态分布,因此您可以了解匹配的接近程度.你可以看到我用来生成这些图 at this gist 的代码.

在典型的机器学习问题中,您将遇到来自许多不同来源的错误(例如测量错误,数据输入错误,分类错误,数据损坏……)并且认为所有这些错误的综合影响大致是不合理的正常(当然,你应该经常检查!)

这个问题的更实用的答案包括:

>因为它使数学更简单.正态分布的概率密度函数是二次方的指数.取对数(就像你经常做的那样,因为你想最大化对数似然)给你一个二次方.区分这个(找到最大值)可以得到一组线性方程,这些方程很容易通过分析求解.

>这很简单 – 整个分布用两个数字来描述,即均值和方差.

>大多数人都会熟悉您的代码/论文/报告.

这通常是一个很好的起点.如果您发现您的分配假设给您的表现不佳,那么也许您可以尝试不同的分布.但您应该首先考虑其他方法来改善模型的性能.

*技术要点 – 它需要有限的方差.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

神经网络在应用科学和工程中的应用

神经网络在应用科学和工程中的应用

萨马拉辛荷 / 2010-1 / 88.00元

《神经网络在应用科学与工程中的应用:从基本原理到复杂的模式识别》为读者提供了神经网络方面简单但却系统的介绍。 《神经网络在应用科学和工程中的应用从基本原理到复杂的模式识别》以神经网络在科学数据分析中所扮演角色的介绍性讨论作为开始,给出了神经网络的基本概念。《神经网络在应用科学和工程中的应用从基本原理到复杂的模式识别》首先对用于实际数据分析的神经网络结构进行了综合概述,继而对线性网络进行了大量......一起来看看 《神经网络在应用科学和工程中的应用》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换