内容简介:您可以使用翻译自:https://stackoverflow.com/questions/30016904/determining-tense-of-a-sentence-python
]我编写了以下代码来确定使用POS标记在 Python 中的句子时态:
from nltk import word_tokenize, pos_tag def determine_tense_input(sentance): text = word_tokenize(sentance) tagged = pos_tag(text) tense = {} tense["future"] = len([word for word in tagged if word[1] == "MD"]) tense["present"] = len([word for word in tagged if word[1] in ["VBP", "VBZ","VBG"]]) tense["past"] = len([word for word in tagged if word[1] in ["VBD", "VBN"]]) return(tense)
这将返回过去/现在/未来动词的使用值,我通常会将最大值作为最终的时态.准确性适度,但我想知道是否有更好的方法.
例如,现在是否有机会编写一个更专注于提取序列时态的包? [注意 – 3个堆叠溢出的帖子中有2个是4年,所以现在可能已经改变了].或者,我应该在nltk中使用不同的解析器来提高准确性吗?如果没有,希望上面的代码可以帮助别人!
您可以使用 Stanford Parser 获取句子的依赖关系解析.依赖关系解析的根将是定义句子的“主要”动词(我不太确定具体的语言术语是什么).然后,您可以使用此动词上的POS标签来查找其时态,并使用它.
翻译自:https://stackoverflow.com/questions/30016904/determining-tense-of-a-sentence-python
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 谷歌 NLP 新进展:利用 AI 改变句子的情绪、时态
- IEMLRN:基于图像增强的句子语义表示
- 【火炉炼AI】机器学习041-NLP句子情感分析
- 基于GRU和am-softmax的句子相似度模型
- FAIR 最新论文:一种不需要训练就能探索句子分类的随机编码器
- 当莎士比亚遇见Google Flax:教你用字符级语言模型和归递神经网络写“莎士比亚”式句子...
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Twenty Lectures on Algorithmic Game Theory
Tim Roughgarden / Cambridge University Press / 2016-8-31 / USD 34.99
Computer science and economics have engaged in a lively interaction over the past fifteen years, resulting in the new field of algorithmic game theory. Many problems that are central to modern compute......一起来看看 《Twenty Lectures on Algorithmic Game Theory》 这本书的介绍吧!