确定句子Python的时态

栏目: Python · 发布时间: 5年前

内容简介:您可以使用翻译自:https://stackoverflow.com/questions/30016904/determining-tense-of-a-sentence-python
关注其他几个帖子,[例如 Detect English verb tenses using NLTK , Identifying verb tenses in python , Python NLTK figure out tense

]我编写了以下代码来确定使用POS标记在 Python 中的句子时态:

from nltk import word_tokenize, pos_tag

def determine_tense_input(sentance):
    text = word_tokenize(sentance)
    tagged = pos_tag(text)

    tense = {}
    tense["future"] = len([word for word in tagged if word[1] == "MD"])
    tense["present"] = len([word for word in tagged if word[1] in ["VBP", "VBZ","VBG"]])
    tense["past"] = len([word for word in tagged if word[1] in ["VBD", "VBN"]]) 
    return(tense)

这将返回过去/现在/未来动词的使用值,我通常会将最大值作为最终的时态.准确性适度,但我想知道是否有更好的方法.

例如,现在是否有机会编写一个更专注于提取序列时态的包? [注意 – 3个堆叠溢出的帖子中有2个是4年,所以现在可能已经改变了].或者,我应该在nltk中使用不同的解析器来提高准确性吗?如果没有,希望上面的代码可以帮助别人!

您可以使用 Stanford Parser 获取句子的依赖关系解析.依赖关系解析的根将是定义句子的“主要”动词(我不太确定具体的语言术语是什么).然后,您可以使用此动词上的POS标签来查找其时态,并使用它.

翻译自:https://stackoverflow.com/questions/30016904/determining-tense-of-a-sentence-python


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Twenty Lectures on Algorithmic Game Theory

Twenty Lectures on Algorithmic Game Theory

Tim Roughgarden / Cambridge University Press / 2016-8-31 / USD 34.99

Computer science and economics have engaged in a lively interaction over the past fifteen years, resulting in the new field of algorithmic game theory. Many problems that are central to modern compute......一起来看看 《Twenty Lectures on Algorithmic Game Theory》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具