并行python迭代

栏目: Python · 发布时间: 6年前

内容简介:翻译自:https://stackoverflow.com/questions/30741061/parallel-python-iteration

我想基于pandas.DataFrame中的值创建一个类的实例.我已经失败了.

import itertools
import multiprocessing as mp
import pandas as pd

class Toy:
    id_iter = itertools.count(1)

    def __init__(self, row):
        self.id = self.id_iter.next()
        self.type = row['type']

if __name__ == "__main__":

    table = pd.DataFrame({
        'type': ['a', 'b', 'c'],
        'number': [5000, 4000, 30000]
        })

    for index, row in table.iterrows():
        [Toy(row) for _ in range(row['number'])]

多处理尝试

我已经能够通过添加以下内容来并行化这种(某种程度):

pool = mp.Pool(processes=mp.cpu_count())
m = mp.Manager()
q = m.Queue()

for index, row in table.iterrows():
    pool.apply_async([Toy(row) for _ in range(row['number'])])

如果行[‘number’]中的数字明显长于表的长度,这似乎会更快.但在我的实际情况中,表格长达数千行,每行[‘number’]相对较小.

尝试将表拆分为cpu_count()块并在表中进行迭代似乎更聪明.但现在我们处于我的 python 技能的边缘.

我已经尝试过python解释器对我尖叫的事情,比如:

pool.apply_async(
        for index, row in table.iterrows(): 
        [Toy(row) for _ in range(row['number'])]
        )

还有“无法腌制”的事情

Parallel(n_jobs=4)(
    delayed(Toy)([row for _ in range(row['number'])]) \
            for index, row in table.iterrows()
)

编辑

这可能让我更接近,但仍然没有.我在一个单独的函数中创建类实例,

def create_toys(row):
    [Toy(row) for _ in range(row['number'])]

....

Parallel(n_jobs=4, backend="threading")(
    (create_toys)(row) for i, row in table.iterrows()
)

但我被告知’NoneType’对象不可迭代.

对我来说有点不清楚你期望的输出是什么.你只想要一份表格的大清单吗?

[Toy(row_1) ... Toy(row_n)]

每个玩具(row_i)出现多重row_i.number?

根据@JD Long提到的答案,我认为你可以这样做:

def process(df):
    L = []
    for index, row in table.iterrows():
        L += [Toy(row) for _ in range(row['number'])]
    return L

table = pd.DataFrame({
    'type': ['a', 'b', 'c']*10,
    'number': [5000, 4000, 30000]*10
    })

p = mp.Pool(processes=8)
split_dfs = np.array_split(table,8)    
pool_results = p.map(process, split_dfs)
p.close()
p.join()

# merging parts processed by different processes
result = [a for L in pool_results for a in L]

翻译自:https://stackoverflow.com/questions/30741061/parallel-python-iteration


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Java语言精粹

Java语言精粹

Jim Waldo / 王江平 / 电子工业出版社 / 2011-6 / 39.00元

这是一本几乎只讲java优点的书。 Jim Waldo先生是原sun微系统公司实验室的杰出工程师,他亲历并参与了java从技术萌生、发展到崛起的整个过程。在这《java语言精粹》里,jim总结了他所认为的java语言及其环境的诸多精良部分,包括:类型系统、异常处理、包机制、垃圾回收、java虚拟机、javadoc、集合、远程方法调用和并发机制。另外,他还从开发者的角度分析了在java技术周围......一起来看看 《Java语言精粹》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试