【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】
我们利用tensorflow、keras、caffe或者mxnet训练好的模型总要移植到嵌入式设备上去运行,因此需要特定的深度学习优化框架。这些框架会利用汇编指令、特定硬件对计算进行优化,提供计算的速度。同时,这些框架一般都自带tensorfow、caffe的模型转换工具,一般不需要很大的努力,这些利用pc、gpu训练出来的模型就可以在嵌入式设备上运行起来。
下面我就来介绍常用的四种深度学习移动框架,其中前三种都可以在github上下载,最后一种需要到公司官网上才能下载学习。
1、paddle-mobile
百度的开源移动框架。
https://github.com/PaddlePaddle/paddle-mobile
2、ncnn
腾讯的开源移动框架。
https://github.com/Tencent/ncnn
3、mace
小米的开源移动框架。
https://github.com/XiaoMi/mace
4、snpe
高通的深度学习移动框架。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
C语言常用算法分析
明日科技 / 2012-1 / 39.80元
《C语言学习路线图•C语言常用算法分析》共分为4篇,第1篇为算法基础篇,包括程序之魂——算法、数据结构基础、查找与排序算法、基本算法思想等内容;第2篇为常用算法篇,包括数学算法、矩阵与数组问题、经典算法等内容;第3篇为趣味算法篇,包括数学趣题、逻辑推理题等内容;第4篇为算法竞技篇,包括计算机等级考试算法实例、程序员考试算法实例、信息学奥赛算法实例等内容。 《C语言学习路线图•C语言常用算法分......一起来看看 《C语言常用算法分析》 这本书的介绍吧!