内容简介:AI从模型走向现实的重要条件有很多,其中十分重要的一点——网络,AI的运转与网络环境息息相关,AI想要走向现实还需真正解决当前网络环境中的“痛点”。最近产业中最爱玩的一个游戏,就是“AI在哪”。
AI从模型走向现实的重要条件有很多,其中十分重要的一点——网络,AI的运转与网络环境息息相关,AI想要走向现实还需真正解决当前网络环境中的“痛点”。
最近产业中最爱玩的一个游戏,就是“AI在哪”。
以往我们能看到AI存在于实验室内、存在于软件之中,但想要让AI从模型走进现实,往往没那么容易。
最起码的,AI任务需要一系列条件去支撑,其细节建立在各种ICT基础设施的迭代之上。或许可以这样比喻,AI就像汽车,当它到来时,配套的高速路加油站修车厂都要建好。马车时代的路况,是无法发挥汽车任何优势的。
AI走到现实的重要条件有很多,尤其需要注意的是,AI必然建立在ICT基础设施之上,通过网络空间延展到万物智能应用当中。
可以说,AI的运转与网络环境息息相关,网络是AI的行军之路。然而在AI的兵马到来之际,网络环境这条运兵栈道真的已经修建好了吗?如果我们分析一下今天AI面临的“网络路况”,会发现其中孕育着很多痛点。同时,一个智能时代的产业机遇也蕴藏其中。
AI时代的前夜,网络表示“压力山大”
我们相信AI时代会在明晨到来,那么今天就是AI时代的前夜。
这个漫长的前夜里,AI应用正在为ICT基础设施提出越来越多的挑战。
首先AI运算相比以往的运算更加复杂,一次智能化识别的背后可能包含着几百个模型的计算。能够承担更复杂的运算任务,显然是AI应用ICT基础设施的第一要务。
同时AI运算往往关乎于图像、关乎于视频,其数据量的庞大程度相比以往实现了从线性到张量的跃进。能承担更大的数据通过量才能让AI应用平稳运行。
最后AI运算对于ICT基础设施的部署条件要求也更加严苛,以往以太网1‰的丢包率,对于AI应用来说会极大的影响其算力发挥。
这些AI给计算和通信带来的改变,同时也给通行的网络环境施加了巨大的负担。无论是智能驾驶这样的巨大数据量任务,还是工业互联网精准的算法模型部署要求,或者AIoT驳杂的运维压力,都给网络环境添加了无数压力。
面对AI的到来,网络环境的痛点可以体现在这样几个方面:
- 庞大算力需要和复杂的异构计算,需要弹性的网络环境支撑,网络速度跟不上,AI算力也就无的放矢。
- AI任务要求大规模部署和并行计算、海量非结构化数据通过、实时学习、算法在框架层和应用层的精准度一致等等。这些新要求是此前的网络环境中所不具备的,需要新的主动网络优化能力。
- AI时代,企业业务空间增长,并行数据量暴增,直接导致运维工作太过复杂,解放这一压力,也已经刻不容缓。
这三大痛点之下,直接的结果是网络交换机市场迎来了全新的挑战,同时也是市场迭代的深刻机遇。具有AI支撑能力、智能运维能力的次世代网络交换机,成为了今天AI大局中的当务之急。
引入CloudEngine 16800作为华为AI发展战略以及全栈全场景AI解决方案中的新成员,通过创造性地在交换机中安装AI芯片,通过智能优化和本地决策获取自动驾驶网络能力。加上单槽48 x 400GE高密端口,可以最大化支持AI运算的高密度流量,把网络环境建设推向了AI时代的新层次。
CloudEngine 16800背后,华为解决了AI前夜的两个重要问题:让现在简单,让未来通顺。
更简单的今天:
用AI之力扭转网络运维困境
分析通过安装AI芯片,CloudEngine 16800首创在交换机当中添加AI算力,在设备层面集成了智能化的主动识别和实施决策能力。在这种能力之下,可以实现秒级故障识别和分钟级故障自动定位。
而这一功能为应用者带来的第一个改变,就在于将可以用AI的智慧来完成运维工作,将今天与日俱增的运维压力释放出来。
用AI来承担原本耗费大量人力,并且逐渐已经无法为人类所完成的网络运维工作,可以看作几个梯段达成的目标。
在CloudEngine 16800的AI引擎解决方案中,首先完成的是智能诊断的本地化,通过CloudEngine 16800的本地推理和实时决策,用AI承担运维工作,减少对云服务诊断的依赖,实现低成本高效率。
接下来,基于智能化运维和故障检测,以及专业故障库的智能匹配,达成故障主动排查,主动监控的能力。将人工难以完成的复杂网络运维监控承担下来。
此外,通过智能运维平台和交换机本地智能构成的分布式AI运维架构的配合,实现故障快速自我修复,完成从本地分析到自我愈合的完整AI网络运维体系。整个网络系统开始接近“自动驾驶”状态,将用户从不断复杂的网络运维中解放出来,从而更加关注场景和应用,而不是消耗大量人力物力在后勤保障上。当以往的困境被改变,整个网络运维系统的灵活性和可部署性也会随之提高。过去伤筋动骨式的维修、扩展将不再重现。
换言之,在AI之力的影响下。交换机的应用模式会一改往日的沉重复,变得更加轻盈、更加简单。
智能优化之下,更多想象力的未来
对于网络环境来说,今天更大的任务是要适应企业用户不断增大的AI算力需求,以及衍生的网络依赖。网络环境必须为AI任务大量普及,提供必要的网络支持。不能等到数据泛滥,深度学习应用迫在眉睫,才发现原来路还没铺好。
基于AI芯片带来的主动分析能力和实时学习能力,CloudEngine 16800应用上了华为独创的iLossLess智能无损交换算法,提供网络结构优化和全网调度能力,满足复杂AI任务在运行时需要的网络空间。这一能力对于AI开发者和运用者来说,将针对未来越来越广泛的AI需求,解决三大底层问题:
- 解决以太网原生短板的丢包问题,提升AI任务精度以及场景一致性。应用上智能无损交换算法后,可以让以太网实现零丢包,充分发挥AI算力,不会在从任务到场景的过程中产生误差。
- 通过灵活的网络调度,加速AI任务训练,加快模型部署效率。同样在智能无损交换算法下,数据中心可以根据流量模型实现自适应和自优化,根据应用状况自主进行资源调度,更加适应AI应用流量弹性空间较大的特征。
- 基于AI开发平台,让IT人员更好的加入AI,从另一个维度降低开发成本,最终实现AI快速低成本落地。这种更加普惠的模式,在企业进行智能化转型时,提供了强大的推助力。
AI时代,并不只是算法的时代,同时也是满足于AI运行,能够把AI效能最大化的系列技术共同的时代。
此刻我们需要的不仅仅是AI技术本身的发展,还有一切与其相关技术的合力前行。其中,网络基础环境就是至关重要的一项。
新一代的网络产品,必须比等待中的产业格局走到更前面。而在产业智能化转型的革命征程中,网络产品绝非是在基层供给燃料的后备军,而是要充当起先锋和开路者的角色,才能让这条漫长的征程走得更加顺遂。
作者:脑极体,微信公众号:脑极体
本文由 @脑极体 原创发布于人人都是产品经理。未经许可,禁止转载。
题图来源于 Unsplash,基于CC0协议。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 2019网络重构趋势展望:网络AI化加速 5G驱动网络新变革
- 网络编程——打开网络库
- python网络爬虫之初始网络爬虫
- 万人直播网络架构与CDN网络
- 深度网络揭秘之深度网络背后的数学
- 深入浅出Kubernetes网络:容器网络初探
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Release It!
Michael T. Nygard / Pragmatic Bookshelf / 2007-03-30 / USD 34.95
“Feature complete” is not the same as “production ready.” Whether it’s in Java, .NET, or Ruby on Rails, getting your application ready to ship is only half the battle. Did you design your system to......一起来看看 《Release It!》 这本书的介绍吧!