字典树-Trie树

栏目: 数据库 · 发布时间: 5年前

内容简介:1、基本概念

字典树的实现与使用

Trie树

1、基本概念

字典树 ,又称为单词查找树, Tire数 ,是一种树形结构,它是一种哈希树的变种。

时间复杂度分析:

假设建立了有N个单词的每个单词的最大长度是L的字典Trie树,那么插入一个单词的最坏时间复杂度是O(L),所以 建树的总的时间复杂度是O(NL)

查询一个单词前缀的单词个数最坏时间复杂度是O(L).

字典树-Trie树

2、基本性质

根节点不包含字符,除根节点外的每一个子节点都包含一个字符

从根节点到某一节点。路径上经过的字符连接起来,就是该节点对应的字符串

每个节点的所有子节点包含的字符都不相同

3、应用场景

典型应用是用于统计,排序和保存大量的字符串(不仅限于字符串),经常被搜索引擎系统用于文本词频统计。

4、优点

利用字符串的公共前缀来减少查询时间,最大限度的减少无谓的字符串比较,查询效率比哈希树高。

二、构建过程

1、节点定义

class TrieNode // 字典树节点
    {
        private int num;// 有多少单词通过这个节点,即由根至该节点组成的字符串模式出现的次数
        private TrieNode[] son;// 所有的儿子节点
        private boolean isEnd;// 是不是最后一个节点
        private char val;// 节点的值

        TrieNode()
        {
            num = 1;
            son = new TrieNode[SIZE];
            isEnd = false;
        }
    }

2、构造函数

Trie() // 初始化字典树
    {
        root = new TrieNode();
    }

3、建立字典树

// 建立字典树
    public void insert(String str) // 在字典树中插入一个单词
    {
        if (str == null || str.length() == 0)
        {
            return;
        }
        TrieNode node = root;
        char[] letters = str.toCharArray();//将目标单词转换为字符数组
        for (int i = 0, len = str.length(); i < len; i++)
        {
            int pos = letters[i] - 'a';
            if (node.son[pos] == null)  //如果当前节点的儿子节点中没有该字符,则构建一个TrieNode并复值该字符
            {
                node.son[pos] = new TrieNode();
                node.son[pos].val = letters[i];
            } 
            else   //如果已经存在,则将由根至该儿子节点组成的字符串模式出现的次数+1
            {
                node.son[pos].num++;
            }
            node = node.son[pos];
        }
        node.isEnd = true;
    }

4、 查找是否完全匹配一个指定的字符串

// 在字典树中查找一个完全匹配的单词.
    public boolean has(String str)
    {
        if(str==null||str.length()==0)
        {
            return false;
        }
        TrieNode node=root;
        char[]letters=str.toCharArray();
        for(int i=0,len=str.length(); i<len; i++)
        {
            int pos=letters[i]-'a';
            if(node.son[pos]!=null)
            {
                node=node.son[pos];
            }
            else
            {
                return false;
            }
        }
        //走到这一步,表明可能完全匹配,也可能部分匹配,如果最后一个字符节点为末端节点,则是完全匹配,否则是部分匹配
        return node.isEnd;
    }

5、前序遍历字典树

// 前序遍历字典树.
    public void preTraverse(TrieNode node)
    {
        if(node!=null)
        {
            System.out.print(node.val+"-");
            for(TrieNode child:node.son)
            {
                preTraverse(child);
            }
        }
    }

6、计算单词前缀的数量

// 计算单词前缀的数量
    public int countPrefix(String prefix)
    {
        if(prefix==null||prefix.length()==0)
        {
            return-1;
        }
        TrieNode node=root;
        char[]letters=prefix.toCharArray();
        for(int i=0,len=prefix.length(); i<len; i++)
        {
            int pos=letters[i]-'a';
            if(node.son[pos]==null)
            {
                return 0;
            }
            else
            {
                node=node.son[pos];
            }
        }
        return node.num;
    }

结果:

字典树-Trie树

三、应用

(问题1)请你选择合适的数据结构,将所有的英文单词生成一个字典Dictionary?

(问题2)给定一个单词,判断这个单词是否在字典Dictionary中,如果在单词库中,输出这个单词出现总共出现的次数,否则输出NO?

package com.xj.test;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map;

public class Trie
{
    private int SIZE = 26;
    private TrieNode root;// 字典树的根

    class TrieNode // 字典树节点
    {
        private int num;// 有多少单词通过这个节点,即由根至该节点组成的字符串模式出现的次数
        private TrieNode[] son;// 所有的儿子节点
        private boolean isEnd;// 是不是最后一个节点
        private char val;// 节点的值

        TrieNode()
        {
            num = 1;
            son = new TrieNode[SIZE];
            isEnd = false;
        }
    }
    Trie() // 初始化字典树
    {
        root = new TrieNode();
    }
    

    // 建立字典树
    public void insert(String str) // 在字典树中插入一个单词
    {
        if (str == null || str.length() == 0)
        {
            return;
        }
        TrieNode node = root;
        char[] letters = str.toCharArray();//将目标单词转换为字符数组
        for (int i = 0, len = str.length(); i < len; i++)
        {
            int pos = letters[i] - 'a';
            if (node.son[pos] == null)  //如果当前节点的儿子节点中没有该字符,则构建一个TrieNode并复值该字符
            {
                node.son[pos] = new TrieNode();
                node.son[pos].val = letters[i];
            } 
            else   //如果已经存在,则将由根至该儿子节点组成的字符串模式出现的次数+1
            {
                node.son[pos].num++;
            }
            node = node.son[pos];
        }
        node.isEnd = true;
    }

    // 计算单词前缀的数量
    public int countPrefix(String prefix)
    {
        if(prefix==null||prefix.length()==0)
        {
            return-1;
        }
        TrieNode node=root;
        char[]letters=prefix.toCharArray();
        for(int i=0,len=prefix.length(); i<len; i++)
        {
            int pos=letters[i]-'a';
            if(node.son[pos]==null)
            {
                return 0;
            }
            else
            {
                node=node.son[pos];
            }
        }
        return node.num;
    }

    // 打印指定前缀的单词
    public String hasPrefix(String prefix)
    {
        if (prefix == null || prefix.length() == 0)
        {
            return null;
        }
        TrieNode node = root;
        char[] letters = prefix.toCharArray();
        for (int i = 0, len = prefix.length(); i < len; i++)
        {
            int pos = letters[i] - 'a';
            if (node.son[pos] == null)
            {
                return null;
            }
            else
            {
                node = node.son[pos];
            }
        }
        preTraverse(node, prefix);
        return null;
    }

    // 遍历经过此节点的单词.
    public void preTraverse(TrieNode node, String prefix)
    {
        if (!node.isEnd)
        {
            for (TrieNode child : node.son)
            {
                if (child != null)
                {
                    preTraverse(child, prefix + child.val);
                }
            }
            return;
        }
        System.out.println(prefix);
    }

    // 在字典树中查找一个完全匹配的单词.
    public boolean has(String str)
    {
        if(str==null||str.length()==0)
        {
            return false;
        }
        TrieNode node=root;
        char[]letters=str.toCharArray();
        for(int i=0,len=str.length(); i<len; i++)
        {
            int pos=letters[i]-'a';
            if(node.son[pos]!=null)
            {
                node=node.son[pos];
            }
            else
            {
                return false;
            }
        }
        //走到这一步,表明可能完全匹配,可能部分匹配,如果最后一个字符节点为末端节点,则是完全匹配,否则是部分匹配
        return node.isEnd;
    }

    // 前序遍历字典树.
    public void preTraverse(TrieNode node)
    {
        if(node!=null)
        {
            System.out.print(node.val+"-");
            for(TrieNode child:node.son)
            {
                preTraverse(child);
            }
        }
    }
    public TrieNode getRoot()
    {
        return this.root;
    }
    public static void main(String[]args) throws IOException
    {
        Trie tree=new Trie();
        String[] dictionaryData= {"hello","student","computer","sorry","acm","people","experienced","who","reminds","everyday","almost"};
        //构建字典
        for(String str:dictionaryData)
        {
            tree.insert(str);
        }
        String filePath="C:\\Users\\Administrator\\Desktop\\sourceFile.txt";
        File file=new File(filePath);
        if(file.isFile() && file.exists())
        { 
            InputStreamReader read = new InputStreamReader(new FileInputStream(file));
            BufferedReader bufferedReader = new BufferedReader(read);
            String lineTxt = null;
            Map<String,Integer> countMap=new HashMap<String,Integer>();
            while((lineTxt = bufferedReader.readLine())!= null)
            {
                if(tree.has(lineTxt))
                {
                    if(countMap.containsKey(lineTxt))
                    {
                        countMap.put(lineTxt, countMap.get(lineTxt)+1);
                    }
                    else
                    {
                        countMap.put(lineTxt, 1);
                    }
                }
                else
                {
                    System.out.println(lineTxt+"不在字典中!");
                }
            }
            for(String s:countMap.keySet())
            {
                System.out.println(s+"出现的次数"+countMap.get(s));
            }
            read.close();
        }
    }   
    
}

text文件内容:

字典树-Trie树

结果:

字典树-Trie树


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

CSS权威指南(第三版)

CSS权威指南(第三版)

[美] Eric A.Meyer / 侯妍、尹志忠 / 中国电力出版社 / 2007-10 / 58.00

你是否既想获得丰富复杂的网页样式,同时又想节省时间和精力?本书为你展示了如何遵循CSS最新规范(CSS2和CSS2.1)将层叠样式表的方方面面应用于实践。 通过本书提供的诸多示例,你将了解如何做到仅在一处建立样式表就能创建或修改整个网站的外观,以及如何得到HTML力不能及的更丰富的表现效果。 资深CSS专家Eric A.Meyer。利用他独有的睿智和丰富的经验对属性、标记、标记属性和实......一起来看看 《CSS权威指南(第三版)》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

SHA 加密
SHA 加密

SHA 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试