内容简介:这篇文章我觉得已经讲得很全面了,我在学习的过程中也没看到有其他要注意的点,如果我再复述一次就实在是浪费时间,所以这篇文章转载于LinkedHashMap 继承自 HashMap,在HashMap基础上,通过维护一条双向链表,解决了HashMap不能随时保持遍历顺序和插入顺序一致的问题。除此之外,LinkedHashMap对访问顺序也提供了相关支持。在一些场景下,该特性很有用,比如缓存。在实现上,LinkedHashMap 很多方法直接继承自 HashMap,仅为维护双向链表覆写了部分方法。所以,要看懂 Li
其他更多 java 基础文章:
java基础学习(目录)这篇文章我觉得已经讲得很全面了,我在学习的过程中也没看到有其他要注意的点,如果我再复述一次就实在是浪费时间,所以这篇文章转载于 田小波的文章 LinkedHashMap 源码详细分析(JDK1.8) 。如果有新的注意点会考虑写源码分析(二)
1. 概述
LinkedHashMap 继承自 HashMap,在HashMap基础上,通过维护一条双向链表,解决了HashMap不能随时保持遍历顺序和插入顺序一致的问题。除此之外,LinkedHashMap对访问顺序也提供了相关支持。在一些场景下,该特性很有用,比如缓存。在实现上,LinkedHashMap 很多方法直接继承自 HashMap,仅为维护双向链表覆写了部分方法。所以,要看懂 LinkedHashMap 的源码,需要先看懂 HashMap 的源码。关于 HashMap 的源码分析,可以参考 java基础:HashMap — 源码分析
2. 原理
上一章说了 LinkedHashMap 继承自 HashMap,所以它的底层仍然是基于拉链式散列结构。该结构由数组和链表或红黑树组成,结构示意图大致如下:
LinkedHashMap 在上面结构的基础上,增加了一条双向链表,使得上面的结构可以保持键值对的插入顺序。同时通过对链表进行相应的操作,实现了访问顺序相关逻辑。其结构可能如下图:
上图中,淡蓝色的箭头表示前驱引用,红色箭头表示后继引用。每当有新键值对节点插入,新节点最终会接在 tail 引用指向的节点后面。而 tail 引用则会移动到新的节点上,这样一个双向链表就建立起来了。
上面的结构并不是很难理解,虽然引入了红黑树,导致结构看起来略为复杂了一些。但大家完全可以忽略红黑树,而只关注链表结构本身。好了,接下来进入细节分析吧。
3. 源码分析
3.1 Entry 的继承体系
在对核心内容展开分析之前,这里先插队分析一下键值对节点的继承体系。先来看看继承体系结构图:
上面的继承体系乍一看还是有点复杂的,同时也有点让人迷惑。HashMap 的 内部类TreeNode
不继承它自己的一个 内部类 Node
,却继承自Node的子类 LinkedHashMap内部类Entry
。这里这样做是有一定原因的,这里先不说。先来简单说明一下上面的继承体系。LinkedHashMap 内部类 Entry继承自HashMap内部类Node,并新增了两个引用,分别是before和after。这两个引用的用途不难理解,也就是用于维护双向链表。同时,TreeNode 继承 LinkedHashMap 的内部类 Entry 后,就具备了和其他 Entry 一起组成链表的能力。但是这里需要大家考虑一个问题。当我们使用 HashMap 时,TreeNode 并不需要具备组成链表能力。如果继承 LinkedHashMap 内部类 Entry ,TreeNode就多了两个用不到的引用,这样做不是会浪费空间吗?简单说明一下这个问题(水平有限,不保证完全正确),这里这么做确实会浪费空间,但与 TreeNode 通过继承获取的组成链表的能力相比,这点浪费是值得的。在 HashMap 的设计思路注释中,有这样一段话:
Because TreeNodes are about twice the size of regular nodes, we use them only when bins contain enough nodes to warrant use (see TREEIFY_THRESHOLD). And when they become too small (due to removal or resizing) they are converted back to plain bins. In usages with well-distributed user hashCodes, tree bins are rarely used.
大致的意思是 TreeNode 对象的大小约是普通Node对象的2倍,我们仅在桶(bin)中包含足够多的节点时再使用。当桶中的节点数量变少时(取决于删除和扩容),TreeNode会被转成Node。当用户实现的hashCode方法具有良好分布性时,树类型的桶将会很少被使用。
通过上面的注释,我们可以了解到。一般情况下,只要 hashCode 的实现不糟糕,Node 组成的链表很少会被转成由 TreeNode 组成的红黑树。也就是说 TreeNode 使用的并不多,浪费那点空间是可接受的。假如 TreeNode 机制继承自 Node 类,那么它要想具备组成链表的能力,就需要 Node 去继承 LinkedHashMap 的内部类 Entry。这个时候就得不偿失了,浪费很多空间去获取不一定用得到的能力。
说到这里,大家应该能明白节点类型的继承体系了。这里单独拿出来说一下,为下面的分析做铺垫。叙述略为啰嗦,见谅。
3.2 链表的建立过程
链表的建立过程是在插入键值对节点时开始的,初始情况下,让LinkedHashMap的head和tail引用同时指向新节点,链表就算建立起来了。随后不断有新节点插入,通过将新节点接在 tail 引用指向节点的后面,即可实现链表的更新。
Map 类型的集合类是通过 put(K,V)方法插入键值对,LinkedHashMap本身并没有覆写父类的put方法,而是直接使用了父类的实现。但在 HashMap 中,put 方法插入的是 HashMap 内部类 Node 类型的节点,该类型的节点并不具备与 LinkedHashMap 内部类 Entry 及其子类型节点组成链表的能力。那么,LinkedHashMap 是怎样建立链表的呢?在展开说明之前,我们先看一下 LinkedHashMap 插入操作相关的代码:
// HashMap 中实现 public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } // HashMap 中实现 final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) {...} // 通过节点 hash 定位节点所在的桶位置,并检测桶中是否包含节点引用 if ((p = tab[i = (n - 1) & hash]) == null) {...} else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) {...} else { // 遍历链表,并统计链表长度 for (int binCount = 0; ; ++binCount) { // 未在单链表中找到要插入的节点,将新节点接在单链表的后面 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) {...} break; } // 插入的节点已经存在于单链表中 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) {...} afterNodeAccess(e); // 回调方法,后续说明 return oldValue; } } ++modCount; if (++size > threshold) {...} afterNodeInsertion(evict); // 回调方法,后续说明 return null; } // HashMap 中实现 Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) { return new Node<>(hash, key, value, next); } // LinkedHashMap 中覆写 Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) { LinkedHashMap.Entry<K,V> p = new LinkedHashMap.Entry<K,V>(hash, key, value, e); // 将 Entry 接在双向链表的尾部 linkNodeLast(p); return p; } // LinkedHashMap 中实现 private void linkNodeLast(LinkedHashMap.Entry<K,V> p) { LinkedHashMap.Entry<K,V> last = tail; tail = p; // last 为 null,表明链表还未建立 if (last == null) head = p; else { // 将新节点 p 接在链表尾部 p.before = last; last.after = p; } } 复制代码
上面就是 LinkedHashMap 插入相关的源码,这里省略了部分非关键的代码。我根据上面的代码,可以知道 LinkedHashMap 插入操作的调用过程。如下:
我把 newNode 方法红色背景标注了出来,这一步比较关键。LinkedHashMap 覆写了该方法。在这个方法中,LinkedHashMap 创建了 Entry,并通过 linkNodeLast 方法将Entry接在双向链表的尾部,实现了双向链表的建立。双向链表建立之后,我们就可以按照插入顺序去遍历 LinkedHashMap,大家可以自己写点测试代码验证一下插入顺序。
以上就是 LinkedHashMap 维护插入顺序的相关分析。本节的最后,再额外补充一些东西。大家如果仔细看上面的代码的话,会发现有两个以 after
开头方法,在上文中没有被提及。在 JDK 1.8 HashMap 的源码中,相关的方法有3个:
// Callbacks to allow LinkedHashMap post-actions void afterNodeAccess(Node<K,V> p) { } void afterNodeInsertion(boolean evict) { } void afterNodeRemoval(Node<K,V> p) { } 复制代码
根据这三个方法的注释可以看出,这些方法的用途是在增删查等操作后,通过回调的方式,让 LinkedHashMap 有机会做一些后置操作。上述三个方法的具体实现在 LinkedHashMap 中,本节先不分析这些实现,相关分析会在后续章节中进行。
3.3 链表节点的删除过程
与插入操作一样,LinkedHashMap 删除操作相关的代码也是直接用父类的实现。在删除节点时,父类的删除逻辑并不会修复LinkedHashMap 所维护的双向链表,这不是它的职责。那么删除及节点后,被删除的节点该如何从双链表中移除呢?当然,办法还算是有的。上一节最后提到 HashMap 中三个回调方法运行LinkedHashMap对一些操作做出响应。所以,在删除及节点后,回调方法 afterNodeRemoval
会被调用。LinkedHashMap 覆写该方法,并在该方法中完成了移除被删除节点的操作。相关源码如下:
// HashMap 中实现 public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } // HashMap 中实现 final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { if (p instanceof TreeNode) {...} else { // 遍历单链表,寻找要删除的节点,并赋值给 node 变量 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) {...} // 将要删除的节点从单链表中移除 else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); // 调用删除回调方法进行后续操作 return node; } } return null; } // LinkedHashMap 中覆写 void afterNodeRemoval(Node<K,V> e) { // unlink LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after; // 将 p 节点的前驱后后继引用置空 p.before = p.after = null; // b 为 null,表明 p 是头节点 if (b == null) head = a; else b.after = a; // a 为 null,表明 p 是尾节点 if (a == null) tail = b; else a.before = b; } 复制代码
删除的过程并不复杂,上面这么多代码其实就做了三件事:
根据 hash 定位到桶位置 遍历链表或调用红黑树相关的删除方法 从 LinkedHashMap 维护的双链表中移除要删除的节点 举个例子说明一下,假如我们要删除下图键值为 3 的节点。
根据 hash 定位到该节点属于3号桶,然后在对3号桶保存的单链表进行遍历。找到要删除的节点后,先从单链表中移除该节点。如下:
然后再双向链表中移除该节点:
删除及相关修复过程并不复杂,结合上面的图片,大家应该很容易就能理解,这里就不多说了。
3.4 访问顺序的维护过程
前面说了插入顺序的实现,本节来讲讲访问顺序。默认情况下,LinkedHashMap 是按插入顺序维护链表。不过我们可以在初始化 LinkedHashMap,指定 accessOrder
参数为 true,即可让它按访问顺序维护链表。访问顺序的原理上并不复杂,当我们调用get/getOrDefault/replace等方法时,只需要将这些方法访问的节点移动到链表的尾部即可。相应的源码如下:
// LinkedHashMap 中覆写 public V get(Object key) { Node<K,V> e; if ((e = getNode(hash(key), key)) == null) return null; // 如果 accessOrder 为 true,则调用 afterNodeAccess 将被访问节点移动到链表最后 if (accessOrder) afterNodeAccess(e); return e.value; } // LinkedHashMap 中覆写 void afterNodeAccess(Node<K,V> e) { // move node to last LinkedHashMap.Entry<K,V> last; if (accessOrder && (last = tail) != e) { LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after; p.after = null; // 如果 b 为 null,表明 p 为头节点 if (b == null) head = a; else b.after = a; if (a != null) a.before = b; /* * 这里存疑,父条件分支已经确保节点 e 不会是尾节点, * 那么 e.after 必然不会为 null,不知道 else 分支有什么作用 */ else last = b; if (last == null) head = p; else { // 将 p 接在链表的最后 p.before = last; last.after = p; } tail = p; ++modCount; } } 复制代码
上面就是访问顺序的实现代码,并不复杂。下面举例演示一下,帮助大家理解。假设我们访问下图键值为3的节点,访问前结构为:
访问后,键值为3的节点将会被移动到双向链表的最后位置,其前驱和后继也会跟着更新。访问后的结构如下:
3.5 基于 LinkedHashMap 实现缓存
前面介绍了 LinkedHashMap 是如何维护插入和访问顺序的,大家对 LinkedHashMap 的原理应该有了一定的认识。本节我们来写一些代码实践一下,这里通过继承 LinkedHashMap 实现了一个简单的 LRU 策略的缓存。在写代码之前,先介绍一下前置知识。
在3.1节分析链表建立过程时,我故意忽略了部分源码分析。本节就把忽略的部分补上,先看源码吧:
void afterNodeInsertion(boolean evict) { // possibly remove eldest LinkedHashMap.Entry<K,V> first; // 根据条件判断是否移除最近最少被访问的节点 if (evict && (first = head) != null && removeEldestEntry(first)) { K key = first.key; removeNode(hash(key), key, null, false, true); } } // 移除最近最少被访问条件之一,通过覆盖此方法可实现不同策略的缓存 protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { return false; } 复制代码
上面的源码的核心逻辑在一般情况下都不会被执行,所以之前并没有进行分析。上面的代码做的事情比较简单,就是通过一些条件,判断是否移除最近最少被访问的节点。看到这里,大家应该知道上面两个方法的用途了。当我们基于LinkedHashMap实现缓存时,通过覆写removeEldestEntry方法可以实现自定义策略的LRU缓存。比如我们可以根据节点数量判断是否移除最近最少被访问的节点,或者根据节点的存活时间判断是否移除该节点等。本节所实现的缓存是基于判断节点数量是否超限的策略。在构造缓存对象时,传入最大节点数。当插入的节点数超过最大节点数时,移除最近最少被访问的节点。实现代码如下:
public class SimpleCache<K, V> extends LinkedHashMap<K, V> { private static final int MAX_NODE_NUM = 100; private int limit; public SimpleCache() { this(MAX_NODE_NUM); } public SimpleCache(int limit) { super(limit, 0.75f, true); this.limit = limit; } public V save(K key, V val) { return put(key, val); } public V getOne(K key) { return get(key); } public boolean exists(K key) { return containsKey(key); } /** * 判断节点数是否超限 * @param eldest * @return 超限返回 true,否则返回 false */ @Override protected boolean removeEldestEntry(Map.Entry<K, V> eldest) { return size() > limit; } } 复制代码
测试代码如下:
public class SimpleCacheTest { @Test public void test() throws Exception { SimpleCache<Integer, Integer> cache = new SimpleCache<>(3); for (int i = 0; i < 10; i++) { cache.save(i, i * i); } System.out.println("插入10个键值对后,缓存内容:"); System.out.println(cache + "\n"); System.out.println("访问键值为7的节点后,缓存内容:"); cache.getOne(7); System.out.println(cache + "\n"); System.out.println("插入键值为1的键值对后,缓存内容:"); cache.save(1, 1); System.out.println(cache); } } 复制代码
测试结果如下:
在测试代码中,设定缓存大小为3。在向缓存中插入10个键值对后,只有最后3个被保存下来了,其他的都被移除了。然后通过访问键值为7的节点,使得该节点被移到双向链表的最后位置。当我们再次插入一个键值对时,键值为7的节点就不会被移除。
本节作为对前面内的补充,简单介绍了 LinkedHashMap 在其他方面的应用。本节内容及相关代码并不难理解,这里就不在赘述了。
4. 总结
本文从 LinkedHashMap 维护双向链表的角度对 LinkedHashMap 的源码进行了分析,并在文章的结尾基于 LinkedHashMap 实现了一个简单的 Cache。在日常开发中,LinkedHashMap 的使用频率虽不及 HashMap,但它也个重要的实现。在 Java 集合框架中,HashMap、LinkedHashMap 和 TreeMap 三个映射类基于不同的数据结构,并实现了不同的功能。HashMap 底层基于拉链式的散列结构,并在 JDK 1.8 中引入红黑树优化过长链表的问题。基于这样结构,HashMap 可提供高效的增删改查操作。LinkedHashMap 在其之上,通过维护一条双向链表,实现了散列数据结构的有序遍历。TreeMap 底层基于红黑树实现,利用红黑树的性质,实现了键值对 排序 功能。我在前面几篇文章中,对 HashMap 和 TreeMap 以及他们均使用到的红黑树进行了详细的分析,有兴趣的朋友可以去看看。
到此,本篇文章就写完了,感谢大家的阅读!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- JStorm 源码解析:基础线程模型
- 深入剖析Vue源码 - 组件基础
- linux内核源码之基础准备篇
- Swoole 源码分析——基础模块之 HashMap
- flask 源码之旅(基础)---什么是 WSGI?
- Spring 源码学习(一)容器的基础结构
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。