Numpy & Pandas & Matplotilb部分API操作

栏目: 数据库 · 发布时间: 5年前

内容简介:在concat里, join的默认参数时outer

创建数组

np.array([10, 11, 12, 13])
# [10 11 12 13]


np.array([10, 11, 12, 13, 14 ,15]).reshape([2,3])
# [
#   [10 11 12]
#   [13 14 15]
# ]


np.array([[1, 2], [3, 4]])
# [
#   [1 2]
#   [3 4]
# ]


np.arange(4)
# [0 1 2 3]


np.arange(2, 6)
# [2 3 4 5]


np.arange(4).reshape([2,2])
# [
#   [0 1]
#   [2 3]
# ]


np.random.random([2,3])
# [
#   [ 0.00136044  0.46854718  0.59149907]
#   [ 0.75636339  0.18204628  0.53191402]
# ]

求值

arr = np.array([10, 11, 12, 13, 14 ,15]).reshape([2,3])
# [
#   [10 11 12]
#   [13 14 15]
# ]


# 总数
np.sum(arr, axis=0)
# [23 25 27]
np.sum(arr, axis=1)
# [33 42]


# 最小数
np.min(arr, axis=0)
# [10 11 12]
np.min(arr, axis=1)
# [10 13]


# 最大数
np.max(arr, axis=0)
# [13 14 15]
np.max(arr, axis=1)
# [12 15]


# 最大/小值得索引值
np.argmin(arr)
# 0 0是索引
np.argmax(arr)
# 5 5是索引


# 平均值
arr.mean()
# np.mean(arr)
# 12.5
np.average(arr)
# 12.5


# 逐步增加
np.cumsum(arr)
# [10 21 33 46 60 75]


# 相差
np.diff(arr)
# [
#   [1 1]
#   [1 1]
# ]

# 替换
np.clip(arr, 11, 14)
# [
#   [11 11 12]
#    [13 14 14]
# ]
# 小于11的数替换成11, 大于14的数替换成14, 其他数不变

索引

arr = np.arange(3, 15).reshape([3,4])
# [
#   [ 3  4  5  6]
#   [ 7  8  9 10]
#   [11 12 13 14]
# ]

arr[1, 1]
# arr[1][1]
# 8

arr[:, 1]
# [ 4 8 12]

arr[1, :]
# [ 7 8 9 10]

arr[1, 1:3]
# [8 9]

arr.flatten()
# [ 3  4  5  6  7  8  9 10 11 12 13 14]

for i in arr.flat:
  print(i)
# 每行打印出值。arr.flat是迭代器

合并

A = np.array([1, 1, 1])
B = np.array([2, 2, 2])

np.vstack((A, B))
# [
#   [1 1 1]
#   [2 2 2]
# ]
np.hstack((A, B))
# [1 1 1 2 2 2]

分割

arr = np.arange(12).reshape([3,4])
# [
#   [ 0  1  2  3]
#   [ 4  5  6  7]
#   [ 8  9 10 11]
# ]

np.split(arr, 2, axis=1)
# [array([
#   [0, 1],
#   [4, 5],
#   [8, 9]
# ]),
# array([
#   [ 2,  3],
#   [ 6,  7],
#   [10, 11]]
# )]

Pandas

导入

import pandas as pd

API

创建列表

pd.Series([1, 3, 6, np.nan, 44, 1])
# 0     1.0
# 1     3.0
# 2     6.0
# 3     NaN
# 4    44.0
# 5     1.0
# dtype: float64


pd.date_range('20171108', periods=6)
# DatetimeIndex(
#   ['2017-11-08', '2017-11-09', '2017-11-10', '2017-11-11','2017-11-12', '2017-11-13'],
#   dtype='datetime64[ns]', 
#   freq='D'
# )


dates = pd.date_range('20171108', periods=6)
pd.DataFrame(np.random.randn(6, 4), index=dates, columns=['a', 'b', 'c', 'd'])
#                    a         b         c         d
# 2017-11-08  0.644350  1.122020 -1.263401  0.163371
# 2017-11-09  0.573329 -0.242054 -0.342220  1.070905
# 2017-11-10  0.714291 -0.721509 -2.298672 -0.513572
# 2017-11-11 -0.614927  2.010482 -1.369179 -0.901276
# 2017-11-12  0.709672 -0.430620  1.070244 -2.308874
# 2017-11-13  1.284080  1.169807  1.668942  0.859300


pd.DataFrame({
  'A': 1.,
  'B': pd.Timestamp('20171108'),
  'C': pd.Series(1, index=list(range(4)), dtype='float32'),
  'D': np.array([3] * 4, dtype='int32'),
  'E': pd.Categorical(['test', 'train', 'test', 'train']),
  'F': 'foo'
})
#      A          B    C  D      E    F
# 0  1.0 2017-11-08  1.0  3   test  foo
# 1  1.0 2017-11-08  1.0  3  train  foo
# 2  1.0 2017-11-08  1.0  3   test  foo
# 3  1.0 2017-11-08  1.0  3  train  foo

选择获取

datas = pd.DataFrame({
  'A': 1.,
  'B': pd.Timestamp('20171108'),
  'C': pd.Series(1, index=list(range(4)), dtype='float32'),
  'D': np.array([3] * 4, dtype='int32'),
  'E': pd.Categorical(['test', 'train', 'test', 'train']),
  'F': 'foo'
})
#     A          B    C  D      E    F
# 0  1.0 2017-11-08  1.0  3   test  foo
# 1  1.0 2017-11-08  1.0  3  train  foo
# 2  1.0 2017-11-08  1.0  3   test  foo
# 3  1.0 2017-11-08  1.0  3  train  foo

datas.A
# datas['A']
# 0    1.0
# 1    1.0
# 2    1.0
# 3    1.0
# Name: A, dtype: float64

datas[0:3]
#      A          B    C  D      E    F
# 0  1.0 2017-11-08  1.0  3   test  foo
# 1  1.0 2017-11-08  1.0  3  train  foo
# 2  1.0 2017-11-08  1.0  3   test  foo

datas.loc[0]
# 当index是类似'2017-11-8的时候', datas.loc['20171108']
# A                      1
# B    2017-11-08 00:00:00
# C                      1
# D                      3
# E                   test
# F                    foo
# Name: 0, dtype: object

datas.loc[:,['A', 'B']]
#      A          B
# 0  1.0 2017-11-08
# 1  1.0 2017-11-08
# 2  1.0 2017-11-08
# 3  1.0 2017-11-08

datas.loc[[1, 3],['A', 'B']]
#      A          B
# 1  1.0 2017-11-08
# 3  1.0 2017-11-08

# icol是基于行号获取的, col是基于index获取的, ix是他们俩的混合(index、行号都可以)
# icol[1]
# ix[1]
# 当index为2017-11-08时, ix['20171108']

datas[datas.E == 'test']
#               A          B    C  D     E    F
# 2017-11-08  1.0 2017-11-08  1.0  3  test  foo
# 2017-11-10  1.0 2017-11-08  1.0  3  test  foo

datas.index
# Int64Index([0, 1, 2, 3], dtype='int64')

datas.columns
# Index([u'A', u'B', u'C', u'D', u'E', u'F'], dtype='object')

datas.values
# array(
# [
#   [1.0, Timestamp('2017-11-08 00:00:00'), 1.0, 3, 'test', 'foo'],
#   [1.0, Timestamp('2017-11-08 00:00:00'), 1.0, 3, 'train', 'foo'],
#   [1.0, Timestamp('2017-11-08 00:00:00'), 1.0, 3, 'test', 'foo'],
#   [1.0, Timestamp('2017-11-08 00:00:00'), 1.0, 3, 'train', 'foo']
# ],
# dtype=object)

排序

datas.sort_index(axis=0, ascending=False)
#      F      E  D    C          B    A
# 0  foo   test  3  1.0 2017-11-08  1.0
# 1  foo  train  3  1.0 2017-11-08  1.0
# 2  foo   test  3  1.0 2017-11-08  1.0
# 3  foo  train  3  1.0 2017-11-08  1.0

datas.sort_index(axis=0, ascending=False)
#      A          B    C  D      E    F
# 3  1.0 2017-11-08  1.0  3  train  foo
# 2  1.0 2017-11-08  1.0  3   test  foo
# 1  1.0 2017-11-08  1.0  3  train  foo
# 0  1.0 2017-11-08  1.0  3   test  foo

datas.sort_values(by='E')
#      A          B    C  D      E    F
# 0  1.0 2017-11-08  1.0  3   test  foo
# 2  1.0 2017-11-08  1.0  3   test  foo
# 1  1.0 2017-11-08  1.0  3  train  foo
# 3  1.0 2017-11-08  1.0  3  train  foo

设置值

datas = pd.DataFrame({
  'A': pd.Series([1, 5, 'test', 'foo'], index=list(range(4))),
  'B': pd.Series([np.nan, 1, np.nan, 'test'], index=list(range(4))),
  'C': pd.Series(1, index=list(range(4)), dtype='float32'),
})
#       A     B    C
# 0     1   NaN  1.0
# 1     5     1  1.0
# 2  test   NaN  1.0
# 3   foo  test  1.0

datas.dropna(axis=0, how='any')
# 当axis是1时,则判断竖向里是否含有NaN的值
# how = 'any' || 'all' 默认是any
# 当是any的时候, 有一个值是NaN的时, 就删除这一行。
# 当时all的时候, 这一行全部为NaN时, 就删除这一行
#      A     B    C
# 1    5     1  1.0
# 3  foo  test  1.0

datas.fillna(value=0)
#       A     B    C
# 0     1     0  1.0
# 1     5     1  1.0
# 2  test     0  1.0
# 3   foo  test  1.0

datas.isnull()
#        A      B      C
# 0  False   True  False
# 1  False  False  False
# 2  False   True  False
# 3  False  False  False

# 当数据特别大的时候, 或者只想判断是否有值是NaN的值时
# np.any(datas.isnull()) == True
#   当有值时NaN时, 将返回True

导入导出

pd.read_csv('***.csv',delimiter=',',encoding='utf-8',names=['test1','test2','test3'])
# 参数一:读取的目标文件
# 参数二:csv文件的分隔符
# 参数三:编码
# 参数四:设置列名

#           test1     test2          test3
# 0    2017-11-18       ABC        51315.0
# 1    2017-11-19       DEF         5659.0
# 2    2017-11-20       GHI         1599.0
# 3    2017-11-21       JKL         2224.0

datas.to_csv('**.csv')

Numpy & Pandas & Matplotilb部分API操作

合并

concat

datas1 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['a', 'b', 'c', 'd'])
#      a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0

datas2 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['a', 'b', 'c', 'd'])
#      a    b    c    d
# 0  1.0  1.0  1.0  1.0
# 1  1.0  1.0  1.0  1.0
# 2  1.0  1.0  1.0  1.0

datas3 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['a', 'b', 'c', 'd'])
#      a    b    c    d
# 0  2.0  2.0  2.0  2.0
# 1  2.0  2.0  2.0  2.0
# 2  2.0  2.0  2.0  2.0

pd.concat([datas1, datas2, datas3], axis=0, ignore_index=True)
#      a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0
# 6  2.0  2.0  2.0  2.0
# 7  2.0  2.0  2.0  2.0
# 8  2.0  2.0  2.0  2.0

pd.concat([datas1, datas2, datas3], axis=1)
#      a    b    c    d    a    b    c    d    a    b    c    d
# 0  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
# 1  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0

concat 部分参数

在concat里, join的默认参数时outer

datas1 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['a', 'b', 'c', 'd'], index=[1, 2, 3])
#      a    b    c    d
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  0.0  0.0  0.0  0.0

datas2 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['b', 'c', 'd', 'e'], index=[2, 3, 4])
#      b    c    d    e
# 2  1.0  1.0  1.0  1.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0

pd.concat([datas1, datas2], join='outer')
#      a    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN
# 2  0.0  0.0  0.0  0.0  NaN
# 3  0.0  0.0  0.0  0.0  NaN
# 2  NaN  1.0  1.0  1.0  1.0
# 3  NaN  1.0  1.0  1.0  1.0
# 4  NaN  1.0  1.0  1.0  1.0

pd.concat([datas1, datas2], join='inner')
#      b    c    d
# 1  0.0  0.0  0.0
# 2  0.0  0.0  0.0
# 3  0.0  0.0  0.0
# 2  1.0  1.0  1.0
# 3  1.0  1.0  1.0
# 4  1.0  1.0  1.0

pd.concat([datas1, datas2], axis=1, join_axes=[datas2.index])
#      a    b    c    d    b    c    d    e
# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0
# 如果没有join_axes值时:
#      a    b    c    d    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0

append

datas1 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['a', 'b', 'c', 'd'])
#      a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0

datas2 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
# a    1
# b    2
# c    3
# d    4
# dtype: int64

datas1.append(datas2, ignore_index=True)
#      a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  2.0  3.0  4.0

merge

left = pd.DataFrame({
  'key': ['k0', 'k1', 'k2', 'k3'],
  'A': ['A0', 'A1', 'A2', 'A3'],
  'B': ['B0', 'B1', 'B2', 'B3']
})
#     A   B key
# 0  A0  B0  k0
# 1  A1  B1  k1
# 2  A2  B2  k2
# 3  A3  B3  k3

right = pd.DataFrame({
  'key': ['k0', 'k1', 'k2', 'k3'],
  'C': ['C0', 'C1', 'C2', 'C3'],
  'D': ['D0', 'D1', 'D2', 'D3']
})
#     C   D key
# 0  C0  D0  k0
# 1  C1  D1  k1
# 2  C2  D2  k2
# 3  C3  D3  k3

pd.merge(left, right, on='key')
#     A   B key   C   D
# 0  A0  B0  k0  C0  D0
# 1  A1  B1  k1  C1  D1
# 2  A2  B2  k2  C2  D2
# 3  A3  B3  k3  C3  D3
left = pd.DataFrame({
  'key1': ['k0', 'k0', 'k1', 'k2'],
  'key2': ['k0', 'k1', 'k0', 'k1'],
  'A': ['A0', 'A1', 'A2', 'A3'],
  'B': ['B0', 'B1', 'B2', 'B3']
})
#     A   B key1 key2
# 0  A0  B0   k0   k0
# 1  A1  B1   k0   k1
# 2  A2  B2   k1   k0
# 3  A3  B3   k2   k1

right = pd.DataFrame({
  'key1': ['k0', 'k1', 'k1', 'k2'],
  'key2': ['k0', 'k0', 'k0', 'k0'],
  'C': ['C0', 'C1', 'C2', 'C3'],
  'D': ['D0', 'D1', 'D2', 'D3']
})
#     C   D key1 key2
# 0  C0  D0   k0   k0
# 1  C1  D1   k1   k0
# 2  C2  D2   k1   k0
# 3  C3  D3   k2   k0

pd.merge(left, right, on=['key1', 'key2'], how='inner')
# how默认是inner
#     A   B key1 key2   C   D
# 0  A0  B0   k0   k0  C0  D0
# 1  A2  B2   k1   k0  C1  D1
# 2  A2  B2   k1   k0  C2  D2

pd.merge(left, right, on=['key1', 'key2'], how='outer')
#      A    B key1 key2    C    D
# 0   A0   B0   k0   k0   C0   D0
# 1   A1   B1   k0   k1  NaN  NaN
# 2   A2   B2   k1   k0   C1   D1
# 3   A2   B2   k1   k0   C2   D2
# 4   A3   B3   k2   k1  NaN  NaN
# 5  NaN  NaN   k2   k0   C3   D3

pd.merge(left, right, on=['key1', 'key2']. how='right')
#      A    B key1 key2   C   D 
# 0   A0   B0   k0   k0  C0  D0 
# 1   A2   B2   k1   k0  C1  D1 
# 2   A2   B2   k1   k0  C2  D2 
# 3  NaN  NaN   k2   k0  C3  D3

pd.merge(left, right, on=['key1', 'key2'], how='left')
#     A   B key1 key2    C    D
# 0  A0  B0   k0   k0   C0   D0
# 1  A1  B1   k0   k1  NaN  NaN
# 2  A2  B2   k1   k0   C1   D1
# 3  A2  B2   k1   k0   C2   D2
# 4  A3  B3   k2   k1  NaN  NaN

matplotilb

导入

import matplotlib.pyplot as plt

API

plot

data = pd.Series(np.random.randn(1000)) # 随机1000个数
data = data.cumsum() # 累加
# 因为pandas本来就是一个数据,所以可以直接plot,
# 还有两种写法: plt.plot(x= , y = ) 或者 plt.plot([xxx, xxx], [yyy, yyy])
data.plot()
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
# linewidth线条的宽度
# linestyle线条风格(-实线 --破折线 -.点划线 :虚线 None说明都不画)
plt.plot([1,50,100],[1,4,9], linewidth=2.5, linestyle='--', label='lalala')
plt.legend(loc='upper left') # 没有这句, 上面的label将不会显示
plt.plot([1,100,200],[1,7,9]) # 第三个数据
plt.title('Demo') # 标题
plt.xlabel('xxx') # x轴名称
plt.ylabel('yyy') # y轴名称
plt.text(60, 10, u'说明文字') # 说明文字
plt.show()  # 显示

Numpy & Pandas & Matplotilb部分API操作

#  随机1000行4列的数字, 行数从0到999, 列表为A B C D
data = pd.DataFrame(np.random.randn(1000, 4),
          index=np.arange(1000),
          columns=list('ABCD'))
data = data.cumsum()  # 累加
data.plot()
plt.show()

Numpy & Pandas & Matplotilb部分API操作

其他图

柱状图

plt.bar(left, height, width=0.8)

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Ruby原理剖析

Ruby原理剖析

[美] Patrick Shaughnessy / 张汉东、秦凡鹏 / 华中科技大学出版社 / 2016-12-1 / 78.80元

《Ruby原理剖析》解开Ruby编程语言的魔法面纱。全书图文并茂、深入浅出地剖析了Ruby编程语言的核心工作原理。作者本着科学实证的精神,设计了一系列实验,帮助读者轻松了解这门编程语言的工作奥秘,包括Ruby如何用虚拟机执行代码,Ruby的垃圾回收算法,以及类和模块在Ruby内部的关系等。一起来看看 《Ruby原理剖析》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换