异端审判器!一个泛用型文本聚类模型的实现(2)

栏目: 编程工具 · 发布时间: 7年前

内容简介:本文由想要看到更多来自知道创宇开发一线的分享,请搜索关注我们的微信公众号:创宇前端(KnownsecFED)。欢迎留言讨论,我们会尽可能回复。感谢您的阅读。

异端审判器!一个泛用型文本聚类模型的实现(2)

上回,我们提出了一种只要输入一堆字符串,就能根据字符串的构造挑拣出“少数派”,以识别异常参数的构想。我们将它称作“异端审判”。

前文中我们已经定义好了一些必要概念,并写出了函数实现。我们的程序递进地量化了字符之间的差异、字符串之间的差异,最终得到了字符串集合之间的差异。有了这项指标,我们就能完成分拣工作。

在生活中,我们常有几排人一起合影的经历。有时是前排蹲下后排站立,有时是矮个子站在前排高个子位居后排。不妨假想一下,如果你就是那位摄影师,正指挥大家列队,你习惯于怎样安排队形呢?

通常情况下,你会直接要求站成大致均匀的两排,再逐个调整细节,直到整个队形看上去令人满意。

这为我们识别“异端”提供了灵感。

想象一位“主教”威立于尖塔的阳台,望着城楼下的人群,现在他要做的就是将人分成两类,一类大致可信,一类有些可疑,再逐个把后者中的信众移进前者,“异端”自然被剩下。

这篇文章中,我们就是要实现这样一件事。

从一刀切开始分类

我们先将每个输入都视作单独的一类,以启动整个流程。整个全集记作 C

# 初始化
# 输入一个列表,如['a','b','c']
# 输出一个把每个元素都封装为列表的列表,如[['a'],['b'],['c']]
def init(sample_list):
    C = []
    for x in sample_list:
        C.append([x])
    return C

基于此前定义的字符串集间距离(在文章中简称为类间距离),选择最接近的两类,合并它们。

这步操作听上去很简单,实际上确实也很简单,但我们会遇到一些麻烦:我们一直使用列表来简单表示集合这个数学概念,它们性质并不相同。集合的三个主要特性中,列表不满足无序性与互异性,因此需要一些额外的处理。

例如,找到最接近的两类,无论如何我们也需要计算出 n^2 个距离,这就不是一件轻松的事。我们将最小距离记作 d ——

def find_min(C):
    # 逻辑告诉我们无论怎样做都必须计算两两之间的全部距离,这里用一个二维列表来记录
    # 数学告诉我们 a->b 与 b->a 的距离是一样的,其实开销可以减小一半
    # 作者告诉大家由于我很懒,就不做这个优化了……
    scale = len(C)
    d = [[0 for i in range(scale)] for i in range(scale)]
    min_d = internal_classes(C[0], C[1])
    where_min_d = [0, 1]
    for i in range(scale):
        for j in range(scale):
            d[i][j] = internal_classes(C[i], C[j])
            if i != j and d[i][j] < min_d:
                min_d = d[i][j]
                where_min_d = [i, j]
    return where_min_d

找到了最小的 d 以后,就该合并它们了。在进行并运算时,我们就会遇到列表与集合的性质差异、逻辑与运算的表示差异等问题,我们重新定义运算函数来弥补这些偏差。

如果这部分让你有点眩晕,不要为此担心。你可以将它们都视作 dirty hack,记住我们只是在做一件简单的事情:将刚才已经找到的类间距离最小的两个集合,合并成一个。

# C:=C-Ci-Cj+CiUCj
# 输入全集列表C及其选出的两个子列表Ci、Cj,如C=[['a'],['b'],['c']],Ci=['a'], Cj=['b']
# 需要注意的是,逻辑上,集合Ci与集合Cj是集合C的【元素】,而交并差都是【集合】之间的运算
# 输出合并Ci与Cj之后的全集列表,如[[['a'],['b']],['c']]
def merge(C, i, j):
    # 在数学上,集合[[1],[2]]与集合[[1,2]]的并集有三个元素,因为[1],[2],[1,2]都是完全不同的元素。但在这里的逻辑上,需要结果为[[1,2]],所以另外定义了特殊的“交集”运算
    # 交集与差集的运算是针对集合的(如[[1]])而非元素(如[1]),所以需要手动装进列表再传参。(其实已经特殊处理的交集运算无必要这样做,但为了逻辑一致遵守了统一的写法)
    C_u = special_union([C[i]], [C[j]])
    C_d = difference(difference(C, [C[i]]), [C[j]])
    C_n = C_d
    C_n.append(C_u)
    return C_n

我们将最接近的两类合并成一类了,而目标是“一刀切”,即把整个全集划分为大致均匀的两类。所以我们不断查找最接近的两类,将其合并,直到有某个集合的总量超过全集的一半。

# 查找规模最大的一个子列表
# 输入全集C,如[[['a'],['b']],['c']]
# 输出规模最大即集合内元素最多的列表的下标,如 0
def find_largest(C):
    s = [0] * len(C)
    max_s = len(C[0])
    where_max_s = 0
    for x in range(len(C)):
        s[x] = len(C[x])
        if s[x] > max_s:
            max_s = s[x]
            where_max_s = x
    return where_max_s

每个步骤都已经定义就绪,整个操作流程是这样的:

def layerClassification(sample_list):
    C = ini(sample_list)
    while True:
        where_min_d = find_min(C)
        i, j = where_min_d
        C = merge(C, i, j)
        where_max_s = find_largest(C)
        if count_elem(C[where_max_s]) > 0.5 * len(C):
            break
    CM = C[where_max_s]
    CN = difference(C, [CM])
    return flatten(CM), flatten(CN)

这段代码中提到了两个辅助函数,其中 count_elem() 用于递归遍历每个集合中实际包含的字符串个数(而非子元素个数),分类的最终结果可能出现复杂的多维列表,而我们只需要两个简单的一维列表用于表示两个集合,定义 flatten() 来展开嵌套。

你!到那边去!

经过了刚才的分类,现在我们有了两个集合。其中的一个包含了原本聚类性比较明显的元素,他们可能长相非常近似,剩下一半只是单纯被剩下了而已,风马牛齐聚一堂,看上去乱糟糟的。

接下来就是“微调”时间啦,我们要从那个泥沙俱下的集合中,把“信众”逐个移动到前面那个相对齐整的集合里,从而将“异端”孤立。

这件事的关键是何时停止:移到哪一步时,那个混乱的集合恰好只剩“异端”,而又没有“异端”错误地赦免呢?

好在我们的主教无需落子无悔,移错了就倒回去嘛。他甚至可以命人把所有结果都罗列出来,由他来判断哪一个方案是最好的。

那我们不妨先不考虑决策的事情,提供全部方案就好。

我们将分类方案记作 S ,一个分类方案由两个集合构成,即{C1, C2},同样地,我们使用列表来表示。为了在不断移动的过程中,存储每一时刻的 C1 与 C2,而不作为引用跟随变化,我们需要使用深拷贝。

def note_solution(S, C1, C2, N):
    _C1 = copy.deepcopy(C1)
    _C2 = copy.deepcopy(C2)
    S.append([_C1, _C2])
    N = N + 1
    return S

基于此前定义的类间距离,我们能够选到 C2 中最接近 C1 的样本:

def select_min(C1, C2):
    min_x = C2[0]
    min_d = classesDistance(C1, min_x)
    for x in C2:
        temp = classesDistance(C1, x)
        if temp < min_d:
            min_d = temp
            min_x = x
    return min_x

把这个样本从 C2 中放进 C1:

def update(min_x, C1, C2):
    C1.append(min_x)
    C2.remove(min_x)
    return [C1, C2]

我们不断搬运元素,直到那个没有聚类性的 C2 被搬空。记录下这个过程中所有分类方案。除了全部分类方案 S 以外,我们同时维护另一个列表,记录被移动的元素,以便于撤回。由于这个列表里所有元素都是我们每一步选出的到 C1 距离最小元素,不妨就将这个列表称作 M ,整个过程如下:

def iterateClassification(C):
    N = 0
    S = []
    M = []
    C1 = C[0]
    C2 = C[1]
    while True:
        note_solution(S, C1, C2, N)
        min_x = select_min(C1, C2)
        M.append(min_x)
        update(min_x, C1, C2)
        if len(C2) == 0:
            break
    del(S[0])
    return S, M

到这里为止,我们反复运用上篇文章中定义的类间距离,做了一次粗选,又列出了所有微调生成的方案。最佳方案必然就是其中之一,留给我们大主教的,只剩一个优化问题。

让我们下回再见~

本文由 创宇前端 作者授权发布,版权属于作者,创宇前端出品。 欢迎注明出处转载本文。文章链接: https://knownsec-fed.com/2019-01-04-heretic-judger-2/

想要看到更多来自知道创宇开发一线的分享,请搜索关注我们的微信公众号:创宇前端(KnownsecFED)。欢迎留言讨论,我们会尽可能回复。

感谢您的阅读。


以上所述就是小编给大家介绍的《异端审判器!一个泛用型文本聚类模型的实现(2)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Google's PageRank and Beyond

Google's PageRank and Beyond

Amy N. Langville、Carl D. Meyer / Princeton University Press / 2006-7-23 / USD 57.50

Why doesn't your home page appear on the first page of search results, even when you query your own name? How do other web pages always appear at the top? What creates these powerful rankings? And how......一起来看看 《Google's PageRank and Beyond》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码