AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

栏目: 编程工具 · 发布时间: 6年前

内容简介:来源:Arxiv   编辑:文强,三石,大明2015年,现任教皇方济各 (Pope Francis) 访美,他是首次对美国进行正式访问的教皇,还将主持在美国领土上的首次封圣,并在国会发表演讲。时任美国总统和副总统的奥巴马及拜登,分别携各自的夫人,一起在美国安德鲁斯空军基地 (Andrews Air Force Base,也是总统机队“空军一号”的驻地) 迎接了教皇专机的降临。

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

来源:Arxiv   编辑:文强,三石,大明

2015年,现任教皇方济各 (Pope Francis) 访美,他是首次对美国进行正式访问的教皇,还将主持在美国领土上的首次封圣,并在国会发表演讲。时任美国总统和副总统的奥巴马及拜登,分别携各自的夫人,一起在美国安德鲁斯空军基地 (Andrews Air Force Base,也是总统机队“空军一号”的驻地) 迎接了教皇专机的降临。

访问期间,方济各“一个出人意料之举”震惊了世界:只见他在向圣坛礼拜后,转身顺手将桌布一抽,上演了一出绝妙的“抽桌布”戏法,动作之行云流水,令人膜拜。

教皇竟然还会这一手!相关视频很快就火遍了全美乃至全球。

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

2015年现任教皇访美,上演绝妙“抽桌布”戏法,美国主教看后表示不爽。当然,这段视频是假造的,但这并不影响其流行。来源:CNN

世人震惊之余,几乎都没有怀疑—— 这个视频当然是假造的

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

在“毫无PS痕迹”的说法还十分流行的2015年,这个“毫无PS痕迹”的视频成了后来被称为DeepFake视频的始祖。

现如今,DeepFake已被用于指代所有看起来或听起来像真的一样的假视频或假音频。

日前,Idiap 生物识别安全和隐私小组负责人 (注:Idiap研究所是瑞士的一家半私人非营利性研究机构,隶属于洛桑联邦理工学院和日内瓦大学,进行语音、计算机视觉、信息检索、生物认证、多模式交互和机器学习等领域的研究)、瑞士生物识别研究和测试中心主任 Sébastien Marcel 和他的同事、Idiap 研究所博士后 Pavel Korshunov 共同撰写了论文, 首次对人脸识别方法检测 DeepFake 的效果进行了较为全面的测评

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

他们经过一系列实验发现, 当前已有的先进人脸识别模型和检测方法,在面对 DeepFake 时基本可以说是束手无策 ——性能最优的图像分类模型 VGG 和基于 Facenet 的算法,分辨真假视频错误率高达 95%;基于唇形的检测方法,也基本检测不出视频中人物说话和口型是否一致。

Pavel Korshunov 和 Sébastien Marcel 指出,随着换脸技术的不断发展,更加逼真的 DeepFake 视频,将对人脸识别技术构成更大的挑战。

“在 DeepFake 方法和检测算法之间的一场新的军备竞赛可能已经开始了。”

面对假脸生成算法,现有人脸识别系统几乎束手无策

针对 Deepfake 视频中人脸识别的漏洞,两人在论文中对基于VGG和Facenet的人脸识别系统做了漏洞分析,还使用SVM方法评估了 DeepFake 的几种检测方法,包括嘴唇动作同步法和图像质量指标检测等。

结果令人遗憾——

无论是基于VGG还是基于Facenet的系统,都不能有效区分GAN生成假脸与原始人脸。而且,越先进的Facenet系统越容易受到攻击。

VGG模型是2014年ILSVRC竞赛的第二名,第一名是GoogLeNet。但是VGG模型在多个迁移学习任务中的表现要优于googLeNet。而且,从图像中提取CNN特征,VGG模型是首选算法。它的缺点在于,参数量有140M之多,需要更大的存储空间。但是这个模型很有研究价值。
Facenet该模型没有用传统的softmax的方式去进行分类学习,而是抽取其中某一层作为特征,学习一个从图像到欧式空间的编码方法,然后基于这个编码再做人脸识别、人脸验证和人脸聚类等。

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

直方图显示了基于VGG和Facenet的人脸识别在高质量人脸交换中的漏洞。

检测Deepfake视频

他们还考虑了几种基线Deepfake检测系统,包括使用视听数据检测唇动和语音之间不一致的系统,以及几种单独基于图像的系统变体。这种系统的各个阶段包括从视频和音频模态中提取特征,处理这些特征,然后训练两个分类器,将篡改的视频与真实视频分开。

所有检测系统的检测结果如下表所示。

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

说明一下表格中各种“符号”和数字的意思,你也可以直接跳过看本节最后结论:

在本系统中,使用MFCCs作为语音特征,以mouth landmarks之间的距离作为视觉特征。将主成分分析(PCA)应用于联合音视频特征,降低特征块的维数,训练长短期记忆(long short-term memory, LSTM)网络,将篡改和非篡改视频进行分离。

作为基于图像的系统,实现了以下功能:

  • Pixels+PCA+LDA:使用PCA-LDA分类器将原始人脸作为特征,保留99%的方差,得到446维变换矩阵。

  • IQM+PCA+LDA:IQM特征与PCA-LDA分类器结合,具有95%保留方差,导致2维变换矩阵。

  • IQM + SVM:具有SVM分类器的IQM功能,每个视频具有20帧的平均分数。

基于图像质量测度(IQM)的系统借鉴了表示域(domain of presentation )的攻击检测,表现出了较好的性能。作为IQM特征向量,使用129个图像质量度量,其中包括信噪比,镜面反射率,模糊度等测量。

下图为两种不同换脸版本中性能最好的IQM+SVM系统的检测误差权衡(DET)曲线。

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

IQM + SVM Deepfake检测

结果表明:

首先,基于唇部同步的算法不能检测人脸交换,因为GAN能够生成与语音匹配的高质量面部表情;因此, 目前只有基于图像的方法才能有效检测Deepfake视频

其次,IQM+SVM系统对Deepfake视频的检测准确率较高,但使用HQ模型生成的视频具有更大的挑战性,这意味着越先进的人脸交换技术将愈发难以检测。

假脸生成和真脸识别算法军备竞赛已经开始

之前,大多数研究都集中在如何提高“换脸”技术上,为了响应公众对检测”换脸“技术的需求,越来越多的研究人员开始研究数据库和检测方法,包括使用较旧的换脸方法Face2Face 生成的图像和视频数据,或使用Snapchat应用程序收集的视频。

在 Pavel Korshunov 和 Sébastien Marcel 写的这篇最新论文中,作者提供了 首个使用基于开源GAN方法进行换脸的开源视频数据库

他们从公开的VidTIMIT数据库中,手动选择了16对长相类似的人,将这32个目标都训练两种不同的模型,分别为低质量 (LQ) 模型,输入/输出大小为64×64,以及高质量 (HQ) 模型,输入/输出大小为128×128尺寸的模型(参见图1)。

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

图1:来自VidTIMIT数据库原始视频,以及低质量(LQ)和高质量(HQ)Deepfake视频的屏幕截图

为了让其他研究人员能够对其成果进行验证、复制和扩展,作者还提供了他们在研究中使用的Deepfake视频数据库、人脸识别系统和Deepfake检测系统,并将相应的分数一起以 Python 开源包的形式放出。

肉眼分辨计算机生成假脸的一些技巧

就在不久前, 英伟达发表论文 ,展示了计算机生成的逼真到恐怖的人脸图像。对于虚假视频泛滥的网络来说,这可能导致一场迫在眉睫的“真相危机”。

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

英伟达新一代GAN生成的人脸,全都是不存在的人

以下图片是从Nvidia的最新论文中获取的截图。看看这份指南里是怎么说的吧。

不对称的面部特征、配饰

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

上面的图片有一堆可疑的线索。最简单的就是,此人头顶位置出现的大块的怪异斑点。这种现象或像差在AI生成的图像中很常见,与几年前谷歌的DeepDream实验的表现一致。

但是,当你环顾这个人的耳朵时,会发现图像略微不对称。一侧头发显得模糊而且看上去很奇怪,且一只耳朵上没有耳环。

算法不具备常识,并且不懂规则,比如不知道耳环一般要两只耳朵都戴。因此,AI算法有时无法生成足够真实的面部特征或首饰等。

牙齿

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

AI算法不知道正常人应该有多少颗牙以及这些牙齿的朝向。一般AI算法不会选择多角度描绘出这些牙齿的样貌,而是乱来一气。图中的虚假头像的牙齿就是典型例子。

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

上面这张图可能稍微难辨别一点,但如果你仔细看她的牙,会发现她中间第三颗牙异常地小,而且耳朵也非常不自然,所以这也是一张生成的假头像。

衣服和背景

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

上边图中的女性的衣服明显有问题,此外注意这张图片的背景也很奇怪,此外右侧的头发和耳环部分都很不自然,而且耳环只有一只。

AI最前线:新一代GAN攻破几乎所有人脸识别系统,胜率95%

上图中,人物的衣服实在太奇怪了,图中左侧的耳朵上并未戴耳环等配饰,但衣服上方却出现了一个悬在空中的“不明装饰物”,这种现象在AI生成的虚假图像中也不少见。

声明:本文来自新智元,版权归作者所有。文章内容仅代表作者独立观点,不代表安全内参立场,转载目的在于传递更多信息。如需转载,请联系原作者获取授权。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Algorithms Unlocked

Algorithms Unlocked

Thomas H. Cormen / The MIT Press / 2013-3-1 / USD 25.00

Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is pro......一起来看看 《Algorithms Unlocked》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具