内容简介:北京大学近日开源了一个全新的中文分词工具包 pkuseg ,相比于现有的同类开源工具,pkuseg 大幅提高了分词的准确率。 pkuseg 由北大语言计算与机器学习研究组研制推出,具备如下特性: 高分词准确率。相比于其他的...
北京大学近日开源了一个全新的中文分词 工具 包 pkuseg ,相比于现有的同类开源工具,pkuseg 大幅提高了分词的准确率。
pkuseg 由北大语言计算与机器学习研究组研制推出,具备如下特性:
高分词准确率。相比于其他的分词工具包,pkuseg 在不同领域的数据上都大幅提高了分词的准确度。根据项目文档给出的测试结果,pkuseg 分别在示例数据集( MSRA 和 CTB8 )上降低了 79.33% 和 63.67% 的分词错误率。
多领域分词。研究组训练了多种不同领域的分词模型。根据待分词的领域特点,用户可以自由地选择不同的模型。
支持用户自训练模型。支持用户使用全新的标注数据进行训练。
性能对比
在 Linux 环境下,各工具在新闻数据 (MSRA) 和混合型文本 (CTB8) 数据上的准确率测试情况如下:
预训练模型
分词模式下,用户需要加载预训练好的模型。我们提供了三种在不同类型数据上训练得到的模型,根据具体需要,用户可以选择不同的预训练模型。以下是对预训练模型的说明:
MSRA : 在 MSRA(新闻语料)上训练的模型。新版本代码采用的是此模型。下载地址
CTB8 : 在 CTB8(新闻文本及网络文本的混合型语料)上训练的模型。下载地址
WEIBO : 在微博(网络文本语料)上训练的模型。下载地址
更多详情可查阅项目仓库。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 北大开源全新中文分词工具包:准确率远超THULAC、结巴分词
- 提高模型准确率:组合模型
- 微博爬虫与水军识别(基于文本分析),超高准确率
- 谷歌设备内置文本分类 AI准确率更精准
- 学会这招,你也可以让商品定价准确率提升 50%
- 亚马逊新系统 Alexa的话题识别准确率提升
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Beautiful Code
Greg Wilson、Andy Oram / O'Reilly Media / 2007-7-6 / GBP 35.99
In this unique work, leading computer scientists discuss how they found unusual, carefully designed solutions to difficult problems. This book lets the reader look over the shoulder of major coding an......一起来看看 《Beautiful Code》 这本书的介绍吧!