学习笔记--Hbase

栏目: 数据库 · 发布时间: 5年前

内容简介:后面做的项目估计要使用到Hbase,因此做知识储备。个人学习路线为参考慕课网相关教学视频,然后翻看Hbase权威指南,并未做很深的原理剖析。本次学习还有一些其他收获:1. 传统RDBMS的扩展思路是什么?

后面做的项目估计要使用到Hbase,因此做知识储备。个人学习路线为参考慕课网相关教学视频,然后翻看Hbase权威指南,并未做很深的原理剖析。

本次学习还有一些其他收获:

1. 传统RDBMS的扩展思路是什么?

传统关系型数据库一般早期是主从结构,一是数据安全的备份,二是读写分离分担主库压力,随着数据量的增加增加从节点,进一步降低主库压力,这些是建立在读远远大于写的情况下一种常规做法,在随着业务量的上升,终极解决方案是分库分表,分库分表解决了单一主节点写入的问题,可以把数据分散到多个主节点中,当然分库分表页带来了诸多的限制,比如事务,跨表或者跨库join。那么造成这些的根本原因是关系型数据库很难做到分布式,所以大家都是从应用层想办法解决数据库性能问题。

当然目前类似TiDB这样的分布式关系型数据库正在崛起,相信以后能够解决这些问题。

2. Hbase分布式的思路

Hbase并不是一个关系型数据库,其面对的场景时海量数据,所以吞吐量是它的目的。高吞吐量自然要使用分布式方案来解决,在Hbase架构中存在一个轻量级master节点,以及众多的region server节点,master只负责集群的管理以及分配工作,数据访问以及写入都通过region server节点进行处理,这是一种设计思路,region server与master可以理解为非强依赖,即使master挂了在短时间内也不会影响客户端的数据访问,而本身master节点又是轻量级,因此挂了快速重启即可,另一种思路就是主备master,当主master挂了之后切换到备用master,当然这样又使得应用本身复杂性增加了不少。

多个region server节点用于承担数据读写请求,那么就涉及到数据分片,Hbase与 Redis 很类似,其都有一个唯一的key标识,利用该值可以做sharding,Redis是最初就分为16000多个槽,然后数据分散到不同的槽当中,对于Hbase则动态的分配region,每一个region处理不同的分段rowKey,当region过大则动态分裂。

下面是本次学习笔记,后面有其他理解会在笔记中补充。


以上所述就是小编给大家介绍的《学习笔记--Hbase》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

社交天性

社交天性

[美] 马修·利伯曼(Matthew D. Lieberman) / 贾拥民 / 浙江人民出版社 / 2016-6 / 69.90

[内容简介] ● 《社交天性》是社会心理学家马修·利伯曼解读人类“社会脑”的权威之作,它告诉我们为什么在充满合作与竞争的智慧社会中人们喜爱社交又相互连接,个人的社会影响力如何得以发挥,书中处处充满了令人惊喜的洞见。 ● 为什么有的人天生善于社交,而有的人总是充满障碍? 为什么智商越高的人越难相处? 心痛对人的伤害甚至超过头痛? 慈善组织如何激发人们的捐赠行为? ......一起来看看 《社交天性》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器