内容简介:原文地址:在《深入理解 Go Slice》中,我们提到了 “根据其类型大小去获取能够申请的最大容量大小” 的处理逻辑。今天我们将更深入地去探究一下,底层到底做了什么东西,涉及什么知识点?
原文地址: Go Slice 最大容量大小是怎么来的
前言
在《深入理解 Go Slice》中,我们提到了 “根据其类型大小去获取能够申请的最大容量大小” 的处理逻辑。今天我们将更深入地去探究一下,底层到底做了什么东西,涉及什么知识点?
Go Slice 对应代码如下:
func makeslice(et *_type, len, cap int) slice { maxElements := maxSliceCap(et.size) if len < 0 || uintptr(len) > maxElements { ... } if cap < len || uintptr(cap) > maxElements { ... } p := mallocgc(et.size*uintptr(cap), et, true) return slice{p, len, cap} }
根据想要追寻的逻辑,定位到了 maxSliceCap
方法,它会根据 当前类型的大小获取到了所允许的最大容量大小
来进行阈值判断,也就是安全检查。这是浅层的了解,我们继续追下去看看还做了些什么?
maxSliceCap
func maxSliceCap(elemsize uintptr) uintptr { if elemsize < uintptr(len(maxElems)) { return maxElems[elemsize] } return maxAlloc / elemsize }
maxElems
var maxElems = [...]uintptr{ ^uintptr(0), maxAlloc / 1, maxAlloc / 2, maxAlloc / 3, maxAlloc / 4, maxAlloc / 5, maxAlloc / 6, maxAlloc / 7, maxAlloc / 8, maxAlloc / 9, maxAlloc / 10, maxAlloc / 11, maxAlloc / 12, maxAlloc / 13, maxAlloc / 14, maxAlloc / 15, maxAlloc / 16, maxAlloc / 17, maxAlloc / 18, maxAlloc / 19, maxAlloc / 20, maxAlloc / 21, maxAlloc / 22, maxAlloc / 23, maxAlloc / 24, maxAlloc / 25, maxAlloc / 26, maxAlloc / 27, maxAlloc / 28, maxAlloc / 29, maxAlloc / 30, maxAlloc / 31, maxAlloc / 32, }
maxElems
是包含一些预定义的切片最大容量值的查找表,索引是切片元素的类型大小。而值看起来 “奇奇怪怪” 不大眼熟,都是些什么呢。主要是以下三个核心点:
- ^uintptr(0)
- maxAlloc
- maxAlloc / typeSize
^uintptr(0)
func main() { log.Printf("uintptr: %v\n", uintptr(0)) log.Printf("^uintptr: %v\n", ^uintptr(0)) }
输出结果:
2019/01/05 17:51:52 uintptr: 0 2019/01/05 17:51:52 ^uintptr: 18446744073709551615
我们留意一下输出结果,比较神奇。取反之后为什么是 18446744073709551615 呢?
uintptr 是什么
在分析之前,我们要知道 uintptr 的本质(真面目),也就是它的类型是什么,如下:
type uintptr uintptr
uintptr 的类型是自定义类型,接着找它的真面目,如下:
#ifdef _64BIT typedef uint64 uintptr; #else typedef uint32 uintptr; #endif
通过对以上代码的分析,可得出以下结论:
- 在 32 位系统下,uintptr 为 uint32 类型,占用大小为 4 个字节
- 在 64 位系统下,uintptr 为 uint64 类型,占用大小为 8 个字节
^uintptr 做了什么事
^ 位运算符的作用是 按位异或 ,如下:
func main() { log.Println(^1) log.Println(^uint64(0)) }
输出结果:
2019/01/05 20:44:49 -2 2019/01/05 20:44:49 18446744073709551615
接下来我们分析一下,这两段代码都做了什么事情呢
^1
二进制:0001
按位取反:1110
该数为有符号整数,最高位为符号位。低三位为表示数值。按位取反后为 1110,根据先前的说明,最高位为 1,因此表示为 -。取反后 110 对应十进制 -2
^uint64(0)
二进制:0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
按位取反:1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
该数为无符号整数,该位取反后得到十进制值为:18446744073709551615
这个值是不是看起来很眼熟呢?没错,就是 ^uintptr(0)
的值。也印证了其底层数据类型为 uint64 的事实 (本机为 64 位)。同时它又代表如下:
- math.MaxUint64
- 2 的 64 次方减 1
maxAlloc
const GoarchMips = 0 const GoarchMipsle = 0 const GoarchWasm = 0 ... _64bit = 1 << (^uintptr(0) >> 63) / 2 heapAddrBits = (_64bit*(1-sys.GoarchWasm))*48 + (1-_64bit+sys.GoarchWasm)*(32-(sys.GoarchMips+sys.GoarchMipsle)) maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1
maxAlloc
是 允许用户分配的最大虚拟内存空间
。在 64 位,理论上可分配最大 1 << heapAddrBits
字节。在 32 位,最大可分配小于 1 << 32
字节
在本文,仅需了解它承载的是什么就好了。具体的在以后内存管理的文章再讲述
注:该变量在 go 10.1 为 _MaxMem
,go 11.4 已改为 maxAlloc
。相关的 heapAddrBits
计算方式也有所改变
maxAlloc / typeSize
我们再次回顾 maxSliceCap
的逻辑代码,这次重点放在控制逻辑,如下:
// func makeslice maxElements := maxSliceCap(et.size) ... // func maxSliceCap if elemsize < uintptr(len(maxElems)) { return maxElems[elemsize] } return maxAlloc / elemsize
通过这段代码和 Slice 上下文逻辑,可得知在想得到该类型的最大容量大小时。会根据对应的类型大小去查找表查找索引(索引为类型大小,摆放顺序是有考虑原因的)。“迫不得已的情况下” 才会手动的计算它的值,最终计算得到的内存字节大小都为该类型大小的整数倍
查找表的设置,更像是一个优化逻辑。减少常用的计算开销 :)
总结
通过本文的分析,可得出 Slice 所允许申请的最大容量大小,与当前 值类型 和当前 平台位数 有直接关系
最后
本文与 《有点不安全却又一亮的 Go unsafe.Pointer》 一同属于 《深入理解 Go Slice》 的关联章节。如果你在阅读源码时,对这些片段有疑惑。记得想尽办法深究下去,搞懂它
短短的一句话其实蕴含着不少知识点,希望这篇文章恰恰好可以帮你解惑
注:本文 Go 代码基于版本 11.4
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 架构,如何进行容量设计?
- Elasticsearch 索引容量管理实践
- 架构思考:业务快速增长时的容量问题
- 如何限制Kubernetes本地临时存储的容量
- 百亿级交互服务的容量测试实践
- 干货:如何将Hadoop存储容量提升4倍?
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。