Go Slice 最大容量大小是怎么来的

栏目: Go · 发布时间: 5年前

内容简介:原文地址:在《深入理解 Go Slice》中,我们提到了 “根据其类型大小去获取能够申请的最大容量大小” 的处理逻辑。今天我们将更深入地去探究一下,底层到底做了什么东西,涉及什么知识点?

Go Slice 最大容量大小是怎么来的

原文地址: Go Slice 最大容量大小是怎么来的

前言

在《深入理解 Go Slice》中,我们提到了 “根据其类型大小去获取能够申请的最大容量大小” 的处理逻辑。今天我们将更深入地去探究一下,底层到底做了什么东西,涉及什么知识点?

Go Slice 对应代码如下:

func makeslice(et *_type, len, cap int) slice {
    maxElements := maxSliceCap(et.size)
    if len < 0 || uintptr(len) > maxElements {
        ...
    }

    if cap < len || uintptr(cap) > maxElements {
        ...
    }

    p := mallocgc(et.size*uintptr(cap), et, true)
    return slice{p, len, cap}
}

根据想要追寻的逻辑,定位到了 maxSliceCap 方法,它会根据 当前类型的大小获取到了所允许的最大容量大小 来进行阈值判断,也就是安全检查。这是浅层的了解,我们继续追下去看看还做了些什么?

maxSliceCap

func maxSliceCap(elemsize uintptr) uintptr {
    if elemsize < uintptr(len(maxElems)) {
        return maxElems[elemsize]
    }
    return maxAlloc / elemsize
}

maxElems

var maxElems = [...]uintptr{
    ^uintptr(0),
    maxAlloc / 1, maxAlloc / 2, maxAlloc / 3, maxAlloc / 4,
    maxAlloc / 5, maxAlloc / 6, maxAlloc / 7, maxAlloc / 8,
    maxAlloc / 9, maxAlloc / 10, maxAlloc / 11, maxAlloc / 12,
    maxAlloc / 13, maxAlloc / 14, maxAlloc / 15, maxAlloc / 16,
    maxAlloc / 17, maxAlloc / 18, maxAlloc / 19, maxAlloc / 20,
    maxAlloc / 21, maxAlloc / 22, maxAlloc / 23, maxAlloc / 24,
    maxAlloc / 25, maxAlloc / 26, maxAlloc / 27, maxAlloc / 28,
    maxAlloc / 29, maxAlloc / 30, maxAlloc / 31, maxAlloc / 32,
}

maxElems 是包含一些预定义的切片最大容量值的查找表,索引是切片元素的类型大小。而值看起来 “奇奇怪怪” 不大眼熟,都是些什么呢。主要是以下三个核心点:

  • ^uintptr(0)
  • maxAlloc
  • maxAlloc / typeSize

^uintptr(0)

func main() {
    log.Printf("uintptr: %v\n", uintptr(0))
    log.Printf("^uintptr: %v\n", ^uintptr(0))
}

输出结果:

2019/01/05 17:51:52 uintptr: 0
2019/01/05 17:51:52 ^uintptr: 18446744073709551615

我们留意一下输出结果,比较神奇。取反之后为什么是 18446744073709551615 呢?

uintptr 是什么

在分析之前,我们要知道 uintptr 的本质(真面目),也就是它的类型是什么,如下:

type uintptr uintptr

uintptr 的类型是自定义类型,接着找它的真面目,如下:

#ifdef _64BIT
typedef    uint64        uintptr;
#else
typedef    uint32        uintptr;
#endif

通过对以上代码的分析,可得出以下结论:

  • 在 32 位系统下,uintptr 为 uint32 类型,占用大小为 4 个字节
  • 在 64 位系统下,uintptr 为 uint64 类型,占用大小为 8 个字节

^uintptr 做了什么事

^ 位运算符的作用是 按位异或 ,如下:

func main() {
    log.Println(^1)
    log.Println(^uint64(0))
}

输出结果:

2019/01/05 20:44:49 -2
2019/01/05 20:44:49 18446744073709551615

接下来我们分析一下,这两段代码都做了什么事情呢

^1

二进制:0001

按位取反:1110

该数为有符号整数,最高位为符号位。低三位为表示数值。按位取反后为 1110,根据先前的说明,最高位为 1,因此表示为 -。取反后 110 对应十进制 -2

^uint64(0)

二进制:0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

按位取反:1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

该数为无符号整数,该位取反后得到十进制值为:18446744073709551615

这个值是不是看起来很眼熟呢?没错,就是 ^uintptr(0) 的值。也印证了其底层数据类型为 uint64 的事实 (本机为 64 位)。同时它又代表如下:

  • math.MaxUint64
  • 2 的 64 次方减 1

maxAlloc

const GoarchMips = 0
const GoarchMipsle = 0
const GoarchWasm = 0

...

_64bit = 1 << (^uintptr(0) >> 63) / 2

heapAddrBits = (_64bit*(1-sys.GoarchWasm))*48 + (1-_64bit+sys.GoarchWasm)*(32-(sys.GoarchMips+sys.GoarchMipsle))

maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1

maxAlloc允许用户分配的最大虚拟内存空间 。在 64 位,理论上可分配最大 1 << heapAddrBits 字节。在 32 位,最大可分配小于 1 << 32 字节

在本文,仅需了解它承载的是什么就好了。具体的在以后内存管理的文章再讲述

注:该变量在 go 10.1 为 _MaxMem ,go 11.4 已改为 maxAlloc 。相关的 heapAddrBits 计算方式也有所改变

maxAlloc / typeSize

我们再次回顾 maxSliceCap 的逻辑代码,这次重点放在控制逻辑,如下:

// func makeslice
maxElements := maxSliceCap(et.size)

...

// func maxSliceCap
if elemsize < uintptr(len(maxElems)) {
    return maxElems[elemsize]
}
return maxAlloc / elemsize

通过这段代码和 Slice 上下文逻辑,可得知在想得到该类型的最大容量大小时。会根据对应的类型大小去查找表查找索引(索引为类型大小,摆放顺序是有考虑原因的)。“迫不得已的情况下” 才会手动的计算它的值,最终计算得到的内存字节大小都为该类型大小的整数倍

查找表的设置,更像是一个优化逻辑。减少常用的计算开销 :)

总结

通过本文的分析,可得出 Slice 所允许申请的最大容量大小,与当前 值类型 和当前 平台位数 有直接关系

最后

本文与 《有点不安全却又一亮的 Go unsafe.Pointer》 一同属于 《深入理解 Go Slice》 的关联章节。如果你在阅读源码时,对这些片段有疑惑。记得想尽办法深究下去,搞懂它

短短的一句话其实蕴含着不少知识点,希望这篇文章恰恰好可以帮你解惑

注:本文 Go 代码基于版本 11.4


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法V

算法V

塞奇威克 (Robert Sedgewick) / 中国电力出版社 / 2003-12 / 54.0

Robert Sedgewick再次给我们提供了重要的流行算法的全面介绍。这次的重点是图形算法,图形算法在很多应用中已日益重要,诸如网络连接、电路设计、调度、事务处理以及资源分配。本书中,Sedgewick同样用简洁的实现将理论和实践成功地结合了起来,这些实现均可在真实应用上测试,这也正是他的著作多年来倍受程序员欢迎的原因。   本书是Sedgewick彻底修订和重写的丛书中的第二本。第一本......一起来看看 《算法V》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

html转js在线工具
html转js在线工具

html转js在线工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具