用R语言实现信息度量

栏目: R语言 · 发布时间: 5年前

内容简介:R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员/Quant: Java,R,Nodejs
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:

http://blog.fens.me/r-entropy

用R语言实现信息度量

前言

香农的《通信的数学理论》是20世纪非常伟大的著作,被认为是现代信息论研究的开端。信息论定义了信息熵,用于把信息进行度量,以比特(bit)作为量纲单位,为如今发达的信息产业和互联网产业奠定了基础。本文接上一篇文章 R语言实现46种距离算法 ,继续philentropy包的介绍,包括信息度量函数的使用。

目录

  1. 信息熵介绍
  2. 关键概念
  3. 信息度量函数
  4. 应用举例

1.信息熵介绍

信息论(Information Theory)是概率论与数理统计的一个分枝,用于研究信息处理、信息熵、通信系统、数据传输、率失真理论、密码学、信噪比、数据压缩等问题的应用数学学科。信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。

香农被称为是“信息论之父”,香农于1948年10月发表的A Mathematical Theory of Communication,通信的数学理论(中文版),通常被认为是现代信息论研究的开端。

信息熵,是对信息随机性的量度,又指信息能被压缩的极限,用bit作为衡量信息的最小单位。一切信息所包含的信息量,都是1bit的正整数倍。计算机系统中常采用二进制编码,一个0或1就是1bit。

举例来说明一下信息熵的计算原理,假设小明最喜欢5种水果,苹果、香蕉、西瓜、草莓、樱桃中的一种,如果小明没有偏爱,选择每种水果的概率都是20%,那么这一信息的信息熵为

H(A) = -1*(0.2*log2(0.2)*5)
= 2.321928 bits

如果小明偏爱香蕉,选择这5种水果的概率分别是10%,20%,45%,15%,10%,那么这一信息信息熵为

H(B)=-1*(0.1*log2(0.1)+0.2*log2(0.2)+0.45*log2(0.45)+0.15*log2(0.15)+0.1*log2(0.1))
= 2.057717 bits

从结果得到H(A)大于H(B),信息熵越大表示越不确定。对于B的情况,对某一种水果的偏好,比A增加了确定性的因素,所以H(B)小于H(A)是符合对于信息熵的定义的。

2. 关键概念

我们从一幅图来认识信息熵,图中显示了随机变量X和Y的2个集合,在信息熵的概念里的所有可能逻辑关系。两个圆所包含的面积为 联合熵H(X,Y) , 左边的整个圆表示X的熵H(X),左边半圆是 条件熵H(X|Y) 。 右边的整个圆表示Y的熵H(Y),右边半圆 条件熵H(Y|X) ,中间交集的部分是 互信息I(X; Y)

用R语言实现信息度量

信息熵(Entropy):是对信息随机性的量度,用于计算信息能被压缩的极限。对随机变量X,不确定性越大,X的信息熵H(X)也就越大。

公式定义:

用R语言实现信息度量

H(x)的取值范围,0<=H(x)<=log(n), 其中n是随机变量x取值的种类数。需要注意的是,熵只依赖于随机变量的分布,与随机变量取值无关。

条件熵(Conditional Entropy):表示两个随机变量X和Y,在已知Y的情况下对随机变量X的不确定性,称之为条件熵H(X|Y),

公式定义:

用R语言实现信息度量

联合熵(Joint Entropy):表示为两个随机事件X和Y的熵的并集,联合熵解决将一维随机变量分布推广到多维随机变量分布。

公式定义:

用R语言实现信息度量

互信息(Mutual Information, 信息增益):两个随机变量X和Y,Y对X的互信息,为后验概率与先验概率比值的对数,即原始的熵H(X)和已知Y的情况下的条件熵H(X|Y)的比值的对数,信息增益越大表示条件Y对于确定性的贡献越大。互信息,也可以用来衡量相似性。

公式定义:

用R语言实现信息度量

当MI(X,Y)=0时,表示两个事件X和Y完全不相关。决策树ID3算法就是使用信息增益来划分特征,信息增益大时,说明对数据划分帮助很大,优先选择该特征进行决策树的划分。

信息增益比率:是信息增益与该特征的信息熵之比,用于解决信息增益对多维度特征的选择,决策树C4.5算法使用信息增益比率进行特征划分。

KL散度(Kullback–Leibler Divergence, 相对熵):随机变量x取值的两个概率分布p和q,用来衡量这2个分布的差异,通常用p表示真实分布,用q表示预测分布。

公式定义:

用R语言实现信息度量

n为事件的所有可能性,如果两个分布完全相同,那么它们的相关熵为0。如果相对熵KL越大,说明它们之间的差异越大,反之相对熵KL越小,说明它们之间的差异越小。

交叉熵(Cross Entropy):是对KL散度的一种变型,把KL散度log(p(x)/q(x))进行拆分,前面部分就是p的熵H(p),后面就是交叉熵H(p,q)。

公式定义:

用R语言实现信息度量

交叉熵可以用来计算学习模型分布与训练分布之间的差异,一般在机器学习中直接用交叉熵做损失函数,用于评估模型。

信息论是通信理论的基础,也是xx的基础,关于信息论的理论,等后面有时时间再做分享,本文重要研究信息熵的函数计算问题。

3. 信息度量函数

philentropy包的函数,主要分为3种类别的函数,第一类是距离测量的函数,第二类是相关性分析,第三类是信息度量函数,本文重点介绍这些信息度量的函数。有关于距离测量函数和相关性分析函数,请参考文章 R语言实现46种距离算法

我们来看一下,philentropy包里信息度量的函数:

  • H(): 香农熵, Shannon’s Entropy H(X)
  • JE() : 联合熵, Joint-Entropy H(X,Y)
  • CE() : 条件熵, Conditional-Entropy H(X|Y)
  • MI() : 互信息, Shannon’s Mutual Information I(X,Y)
  • KL() : KL散度, Kullback–Leibler Divergence
  • JSD() : JS散度,Jensen-Shannon Divergence
  • gJSD() : 通用JS散度,Generalized Jensen-Shannon Divergence

本文的系统环境为:

  • Win10 64bit
  • R: 3.4.2 x86_64-w64-mingw32

3.1 H()香农熵

H()函数,可用于快速计算任何给定概率向量的香农熵。

H()函数定义:

H (x, unit = "log2")

参数列表:

  • x, 概率向量
  • unit,对数化的单位,默认为log2

函数使用:

# 创建数据x
> x<-1:10;x
 [1]  1  2  3  4  5  6  7  8  9 10
> x1<-x/sum(x);x1
 [1] 0.01818182 0.03636364 0.05454545 0.07272727
 [5] 0.09090909 0.10909091 0.12727273 0.14545455
 [9] 0.16363636 0.18181818

# 计算香农熵
> H(px)
[1] 3.103643

同样地,我们也可以用程序实现公式自己算一下。

# 创建数据x
> x<-1:10
#计算x的概率密度px
> px<-x/sum(x)  

# 根据公式计算香农熵
> -1*sum(px*log2(px))
[1] 3.103643

我们动手的计算结果,用于H()函数的计算结果是一致的。

3.2 CE()条件熵

CE()函数,基于给定的联合概率向量P(X,Y)和概率向量P(Y),根据公式 H(X|Y)= H(X,Y)-H(Y)计算香农的条件熵。

函数定义:

CE(xy, y, unit = "log2")

参数列表:

  • xy, 联合概率向量
  • y, 概率向量,必须是随机变量y的概率分布
  • unit,对数化的单位,默认为log2

函数使用:

> x3<- 1:10/sum(1:10)
> y3<- 30:40/sum(30:40)

# 计算条件熵
> CE(x3, y3)
[1] -0.3498852

3.3 JE()联合熵

JE()函数,基于给定的联合概率向量P(X,Y)计算香农的联合熵H(X,Y)。

JE()函数定义:

JE (x, unit = "log2")

参数列表:

  • x, 联合概率向量
  • unit,对数化的单位,默认为log2

函数使用:

# 创建数据x
> x2 <- 1:100/sum(1:100)

# 联合熵
> JE(x2)
[1] 6.372236

3.4 MI()互信息

MI()函数,根据给定联合概率向量P(X,Y)、概率向量P(X)和概率向量P(X),按公式I(X,Y)= H(X)+ H(Y)-H(X,Y)计算。

函数定义:

MI(x, y, xy, unit = "log2")

参数列表:

  • x, 概率向量
  • x, 概率向量
  • xy, 联合概率向量
  • unit,对数化的单位,默认为log2

函数使用:

# 创建数据集
> x3 <- 1:10/sum(1:10)
> y3<- 20:29/sum(20:29)
> xy3 <- 1:10/sum(1:10)

# 计算互信息
> MI(x3, y3, xy3)
[1] 3.311973

3.5 KL()散度

KL()函数,计算两个概率分布P和Q的Kullback-Leibler散度。

函数定义:

KL(x, test.na = TRUE, unit = "log2", est.prob = NULL)

参数列表:

  • x, 概率向量或数据框
  • test.na, 是否检查NA值
  • unit,对数化的单位,默认为log2
  • est.prob, 用计数向量估计概率的方法,默认值NULL。

函数使用:

# 创建数据集
> df4 <- rbind(x3,y3);df4
         [,1]       [,2]       [,3]       [,4]       [,5]      [,6]      [,7]      [,8]      [,9]
x3 0.01818182 0.03636364 0.05454545 0.07272727 0.09090909 0.1090909 0.1272727 0.1454545 0.1636364
y3 0.08163265 0.08571429 0.08979592 0.09387755 0.09795918 0.1020408 0.1061224 0.1102041 0.1142857
       [,10]
x3 0.1818182
y3 0.1183673

# 计算KL散度 
> KL(df4, unit = "log2") # Default
kullback-leibler 
       0.1392629 
> KL(df4, unit = "log10")
kullback-leibler 
       0.0419223 
> KL(df4, unit = "log")
kullback-leibler 
      0.09652967

3.5 JSD()散度

JSD()函数,基于具有相等权重的Jensen-Shannon散度,计算距离矩阵或距离值。

公式定义:

用R语言实现信息度量

函数定义:

JSD(x, test.na = TRUE, unit = "log2", est.prob = NULL)

参数列表:

  • x, 概率向量或数据框
  • test.na, 是否检查NA值
  • unit, 对数化的单位,默认为log2
  • est.prob, 用计数向量估计概率的方法,默认值NULL。
# 创建数据
> x5 <- 1:10
> y5 <- 20:29
> df5 <- rbind(x5,y5)

# 计算JSD
> JSD(df5,unit='log2')
jensen-shannon 
      50.11323 
> JSD(df5,unit='log')
jensen-shannon 
      34.73585 
> JSD(df5,unit='log10')
jensen-shannon 
      15.08559 

# 计算JSD,满足est.prob
> JSD(df5, est.prob = "empirical")
jensen-shannon 
    0.03792749

3.6 gJSD()散度

gJSD()函数,计算概率矩阵的广义Jensen-Shannon散度。

公式定义:

用R语言实现信息度量

函数定义:

gJSD(x, unit = "log2", weights = NULL)

参数列表:

  • x, 概率矩阵
  • unit, 对数化的单位,默认为log2
  • weights, 指定x中每个值的权重,默认值NULL。
# 创建数据
> Prob <- rbind(1:10/sum(1:10), 20:29/sum(20:29), 30:39/sum(30:39))

# 计算gJSD
> gJSD(Prob)
[1] 0.023325

4. 应用举例

在我们了解了熵的公式原理和使用方法后,我们就可以做一个案例来试一下。我们定义一个场景的目标:通过用户的看书行为,预测用户是否爱玩游戏。通过我们一步一步地推倒,我们计算出熵,条件熵,联合熵,互信息等指标。

第一步,创建数据集为2列,X列用户看书的类型,包括旅游(Tourism)、美食(Food)、IT技术(IT),Y列用户是否喜欢打游戏,喜欢(Y),不喜欢(N)。

X,Y
Tourism,Y
Food,N
IT,Y
Tourism,N
Tourism,N
IT,Y
Food,N
Tourism,Y

第二步,建立联合概率矩阵,分别计算H(X),Y(X)。

X Y N p(X)
Tourism 2/8=0.25 2/8=0.25 0.25+0.25=0.5
Food 0/8=0 2/8=0.25 0+0.25=0.25
IT 2/8=0.25 0/8=0 0.25+0=0.25
p(Y) 0.25+0+0.25=0.5 0.25+0.25+0=0.5

计算过程

# 分别计算每种情况的概率
p(X=Tourism) = 2/8 + 2/8 = 0.5
p(X=Food) = 2/8 + 0/8 = 0.25
p(X=IT) = 0/8 + 2/8 = 0.25
p(Y=Y) = 4/8 = 0.5
p(Y=N) = 4/8 = 0.5

# 计算H(X)
H(X) = -∑p(xi)*log2(p(xi)) 
 = -p(X=Tourism)*log2(p(X=Tourism) ) -p(X=Food)*log2(p(X=Food) ) -p(X=IT)*log2(p(X=IT) ) 
 = -0.5*log(0.5) -0.25*log(0.25) - 0.25*log(0.25)
 = 1.5

# 计算H(Y)
H(Y) = -∑p(yi)*log2(p(yi)) 
 = -p(Y=Y)*log2(p(Y=Y)) -p(Y=N)*log2(p(Y=N))
 = -0.5*log(0.5) -0.5*log(0.5)
 = 1

第三步,计算每一项的条件熵,H(Y|X=Tourism),H(Y|X=Food),H(Y|X=IT)。

H(Y|X=Tourism) = -p(Y|X=Tourism)*log(p(Y|X=Tourism)) - p(N|X=Tourism)*log(p(N|X=Tourism))
 = -0.5*log(0.5) -0.5*log(0.5)
 = 1

H(Y|X=Food) = -p(Y|X=Food)*log(p(Y|X=Food)) -p(N|X=Food)*log(p(N|X=Food))
 = -0*log(0) -1*log(1)
 = 0

H(Y|X=IT) = -p(Y|X=IT)*log(p(Y|X=IT)) -p(N|X=IT)*log(p(N|X=IT))
 = -1*log(1) -0*log(0) 
 = 0

第四步,计算条件熵H(Y|X)

H(Y|X) = ∑p(xi)*H(Y|xi)
 = p(X=Tourism)*H(Y|X=Tourism) + p(X=Food)*H(Y|X=Food) + p(X=IT)*H(Y|X=IT)
 = 0.5*1 + 0.25*0 + 0.25*0
 = 0.5

第五步,计算联合熵H(X,Y)

H(X,Y) = −∑p(x,y)log(p(x,y))
 = H(X) + H(Y|X)
 = 1.5 + 0.5
 = 2

第六步,计算互信息I(X;Y)

I(X;Y) = H(Y) - H(Y|X)  = 1 - 0.5 = 0.5
 = H(X) + H(Y) - H(X,Y) = 1.5 + 1 - 2 = 0.5

我们把上面的推到过程,用程序来实现一下。

# 创建数据集
> X<-c('Tourism','Food','IT','Tourism','Tourism','IT','Food','Tourism')
> Y<-c('Y','N','Y','N','N','Y','N','Y') 
> df<-cbind(X,Y);df
     X         Y  
[1,] "Tourism" "Y"
[2,] "Food"    "N"
[3,] "IT"      "Y"
[4,] "Tourism" "N"
[5,] "Tourism" "N"
[6,] "IT"      "Y"
[7,] "Food"    "N"
[8,] "Tourism" "Y

变型为频率矩阵

> tf<-table(df[,1],df[,2]);tf
         
          N Y
  Food    2 0
  IT      0 2
  Tourism 2 2

计算概率矩阵

> pX<-margin.table(tf,1)/margin.table(tf);pX
Tourism    Food      IT 
   0.50    0.25    0.25 
> pY<-margin.table(tf,2)/margin.table(tf);pY
  Y   N 
0.5 0.5 
> pXY<-prop.table(tf);pXY
           Y    N
Tourism 0.25 0.25
Food    0.00 0.25
IT      0.25 0.00

计算熵

> H(pX)
[1] 1.5
> H(pY)
[1] 1

# 条件熵 
> CE(pX,pY)
[1] 0.5

# 联合熵 
> JE(pXY)
[1] 2

# 互信息
> MI(pX,pY,pXY)
[1] 0.5

计算原理是复杂的,用R语言的程序实现却是很简单的,几行代码就搞定了,

本文只是对的信息论的初探,重点还是在信息度量方法的R语言实现。信息熵作为信息度量的基本方法,对各种主流的机器学习的算法都有支撑,是我们必须要掌握的知识。了解本质才能发挥数据科学的潜力,学习的路上不断积累和前进。

转载请注明出处:

http://blog.fens.me/r-entropy

用R语言实现信息度量


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法数论

算法数论

裴定一、祝跃飞 / 科学出版社 / 2002年09月 / 19.00

本书论述了算法数论的基本内容,其中包括:连分数、代数数域、椭圆曲线、素性检验、大整数因子分解算法、椭圆曲线上的离散对数、超椭圆曲线。本书的特点是内容涉及面广,在有限的篇幅内,包含了必要的预备知识和数学证明,尽可能形成一个完整的体系。并且本书的部分内容曾多次在中国科学院研究生院信息安全国家重点实验室和广州大学作为硕士研究生教材使用。 本书可作为信息安全、数论等专业的研究生教材及相关专业的研究人......一起来看看 《算法数论》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具