MTCNN移植安卓并检测视频中人脸

栏目: IOS · Android · 发布时间: 5年前

内容简介:版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cuiran/article/details/85329317

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cuiran/article/details/85329317

继续此前的文章,使用vlc播放了rtsp流媒体视频后,想检测视频中的人脸,之前采用了opencv但是遇到低头、抬头和侧脸时候,效果就不太好。所以本篇介绍如何使用mtcnn来检测视频中的人脸。

大致流程:

一、Tensorflow 模型固化

将PNet、ONet、RNet 网络参数.npy固化成.pb格式,方便 java 载入, 固化后的文件在assets中,文件名mtcnn_freezed_model.pb。

二、引入android tensorflow lite 库

只需在build.gradle(module)最后添加以下几行语句即可。

dependencies {
    implementation fileTree(include: ['*.jar'], dir: 'libs')
    implementation 'com.android.support:appcompat-v7:27.1.1'
    implementation 'com.android.support.constraint:constraint-layout:1.1.3'
    testImplementation 'junit:junit:4.12'
    androidTestImplementation 'com.android.support.test:runner:1.0.2'
    androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
    compile(name: 'libvlc-3.0.0', ext: 'aar')
    implementation files('libs/androidutils.jar')
    compile 'org.tensorflow:tensorflow-android:+'
    implementation files('libs/libutils.jar')
}

三、新建MTCNN类

该类包含加载模型文件,并检测bitmap中的人脸

package com.cayden.face.facenet;

import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.Matrix;
import android.graphics.Point;
import android.util.Log;


import com.cayden.face.FaceApplication;

import org.tensorflow.contrib.android.TensorFlowInferenceInterface;

import java.util.Vector;

import static java.lang.Math.max;
import static java.lang.Math.min;

/**
 *  Created by caydencui on 2018/9/6.
 */
public class MTCNN {
    //参数
    private float factor=0.709f;
    private float PNetThreshold=0.6f;
    private float RNetThreshold=0.7f;
    private float ONetThreshold=0.7f;
    //MODEL PATH
    private static final String MODEL_FILE  = "file:///android_asset/mtcnn_freezed_model.pb";
    //tensor name
    private static final String PNetInName  ="pnet/input:0";
    private static final String[] PNetOutName =new String[]{"pnet/prob1:0","pnet/conv4-2/BiasAdd:0"};
    private static final String RNetInName  ="rnet/input:0";
    private static final String[] RNetOutName =new String[]{ "rnet/prob1:0","rnet/conv5-2/conv5-2:0",};
    private static final String ONetInName  ="onet/input:0";
    private static final String[] ONetOutName =new String[]{ "onet/prob1:0","onet/conv6-2/conv6-2:0","onet/conv6-3/conv6-3:0"};


    private static class SingletonInstance {
        private static final MTCNN INSTANCE = new MTCNN();
    }

    public static MTCNN getInstance() {
        return SingletonInstance.INSTANCE;
    }

    //安卓相关
    public  long lastProcessTime;   //最后一张图片处理的时间ms
    private static final String TAG="MTCNN";
    private AssetManager assetManager;
    private TensorFlowInferenceInterface inferenceInterface;

    private MTCNN() {
        assetManager= FaceApplication.getMyApplication().getAssets();
        loadModel();
    }



    private boolean loadModel() {
        //AssetManager
        try {
            inferenceInterface = new TensorFlowInferenceInterface(assetManager, MODEL_FILE);
            Log.d("MTCNN","[*]load model success");
        }catch(Exception e){
            Log.e("MTCNN","[*]load model failed"+e);
            return false;
        }
        return true;
    }
    //读取Bitmap像素值,预处理(-127.5 /128),转化为一维数组返回
    private float[] normalizeImage(Bitmap bitmap){
        int w=bitmap.getWidth();
        int h=bitmap.getHeight();
        float[] floatValues=new float[w*h*3];
        int[]   intValues=new int[w*h];
        bitmap.getPixels(intValues,0,bitmap.getWidth(),0,0,bitmap.getWidth(),bitmap.getHeight());
        float imageMean=127.5f;
        float imageStd=128;

        for (int i=0;i<intValues.length;i++){
            final int val=intValues[i];
            floatValues[i * 3 + 0] = (((val >> 16) & 0xFF) - imageMean) / imageStd;
            floatValues[i * 3 + 1] = (((val >> 8) & 0xFF) - imageMean) / imageStd;
            floatValues[i * 3 + 2] = ((val & 0xFF) - imageMean) / imageStd;
        }
        return floatValues;
    }
    /*
       检测人脸,minSize是最小的人脸像素值
     */
    private Bitmap bitmapResize(Bitmap bm, float scale) {
        int width = bm.getWidth();
        int height = bm.getHeight();
        // CREATE A MATRIX FOR THE MANIPULATION。matrix指定图片仿射变换参数
        Matrix matrix = new Matrix();
        // RESIZE THE BIT MAP
        matrix.postScale(scale, scale);
        Bitmap resizedBitmap = Bitmap.createBitmap(
                bm, 0, 0, width, height, matrix, true);
        return resizedBitmap;
    }
    //输入前要翻转,输出也要翻转
    private  int PNetForward(Bitmap bitmap, float [][]PNetOutProb, float[][][]PNetOutBias){
        int w=bitmap.getWidth();
        int h=bitmap.getHeight();

        float[] PNetIn=normalizeImage(bitmap);
        Utils.flip_diag(PNetIn,h,w,3); //沿着对角线翻转
        inferenceInterface.feed(PNetInName,PNetIn,1,w,h,3);
        inferenceInterface.run(PNetOutName,false);
        int PNetOutSizeW=(int) Math.ceil(w*0.5-5);
        int PNetOutSizeH=(int) Math.ceil(h*0.5-5);
        float[] PNetOutP=new float[PNetOutSizeW*PNetOutSizeH*2];
        float[] PNetOutB=new float[PNetOutSizeW*PNetOutSizeH*4];
        inferenceInterface.fetch(PNetOutName[0],PNetOutP);
        inferenceInterface.fetch(PNetOutName[1],PNetOutB);
        //【写法一】先翻转,后转为2/3维数组
        Utils.flip_diag(PNetOutP,PNetOutSizeW,PNetOutSizeH,2);
        Utils.flip_diag(PNetOutB,PNetOutSizeW,PNetOutSizeH,4);
        Utils.expand(PNetOutB,PNetOutBias);
        Utils.expandProb(PNetOutP,PNetOutProb);
        /*
        *【写法二】这个比较快,快了3ms。意义不大,用上面的方法比较直观
        for (int y=0;y<PNetOutSizeH;y++)
            for (int x=0;x<PNetOutSizeW;x++){
               int idx=PNetOutSizeH*x+y;
               PNetOutProb[y][x]=PNetOutP[idx*2+1];
               for(int i=0;i<4;i++)
                   PNetOutBias[y][x][i]=PNetOutB[idx*4+i];
            }
        */
        return 0;
    }
    //Non-Maximum Suppression
    //nms,不符合条件的deleted设置为true
    private void nms(Vector<Box> boxes, float threshold, String method){
        //NMS.两两比对
        //int delete_cnt=0;
        for(int i=0;i<boxes.size();i++) {
            Box box = boxes.get(i);
            if (!box.deleted) {
                //score<0表示当前矩形框被删除
                for (int j = i + 1; j < boxes.size(); j++) {
                    Box box2=boxes.get(j);
                    if (!box2.deleted) {
                        int x1 = max(box.box[0], box2.box[0]);
                        int y1 = max(box.box[1], box2.box[1]);
                        int x2 = min(box.box[2], box2.box[2]);
                        int y2 = min(box.box[3], box2.box[3]);
                        if (x2 < x1 || y2 < y1) continue;
                        int areaIoU = (x2 - x1 + 1) * (y2 - y1 + 1);
                        float iou=0f;
                        if (method.equals("Union"))
                            iou = 1.0f*areaIoU / (box.area() + box2.area() - areaIoU);
                        else if (method.equals("Min"))
                            iou= 1.0f*areaIoU / (min(box.area(),box2.area()));
                        if (iou >= threshold) { //删除prob小的那个框
                            if (box.score>box2.score)
                                box2.deleted=true;
                            else
                                box.deleted=true;
                            //delete_cnt++;
                        }
                    }
                }
            }
        }
        //Log.i(TAG,"[*]sum:"+boxes.size()+" delete:"+delete_cnt);
    }
    private int generateBoxes(float[][] prob,float[][][]bias,float scale,float threshold,Vector<Box> boxes){
        int h=prob.length;
        int w=prob[0].length;
        //Log.i(TAG,"[*]height:"+prob.length+" width:"+prob[0].length);
        for (int y=0;y<h;y++)
            for (int x=0;x<w;x++){
                float score=prob[y][x];
                //only accept prob >threadshold(0.6 here)
                if (score>PNetThreshold){
                    Box box=new Box();
                    //score
                    box.score=score;
                    //box
                    box.box[0]= Math.round(x*2/scale);
                    box.box[1]= Math.round(y*2/scale);
                    box.box[2]= Math.round((x*2+11)/scale);
                    box.box[3]= Math.round((y*2+11)/scale);
                    //bbr
                    for(int i=0;i<4;i++)
                        box.bbr[i]=bias[y][x][i];
                    //add
                    boxes.addElement(box);
                }
            }
        return 0;
    }
    private void BoundingBoxReggression(Vector<Box> boxes){
        for (int i=0;i<boxes.size();i++)
            boxes.get(i).calibrate();
    }
    //Pnet + Bounding Box Regression + Non-Maximum Regression
    /* NMS执行完后,才执行Regression
     * (1) For each scale , use NMS with threshold=0.5
     * (2) For all candidates , use NMS with threshold=0.7
     * (3) Calibrate Bounding Box
     * 注意:CNN输入图片最上面一行,坐标为[0..width,0]。所以Bitmap需要对折后再跑网络;网络输出同理.
     */
    private Vector<Box> PNet(Bitmap bitmap, int minSize){
        int whMin=min(bitmap.getWidth(),bitmap.getHeight());
        float currentFaceSize=minSize;  //currentFaceSize=minSize/(factor^k) k=0,1,2... until excced whMin
        Vector<Box> totalBoxes=new Vector<Box>();
        //【1】Image Paramid and Feed to Pnet
        while (currentFaceSize<=whMin){
            float scale=12.0f/currentFaceSize;
            //(1)Image Resize
            Bitmap bm=bitmapResize(bitmap,scale);
            int w=bm.getWidth();
            int h=bm.getHeight();
            //(2)RUN CNN
            int PNetOutSizeW=(int)(Math.ceil(w*0.5-5)+0.5);
            int PNetOutSizeH=(int)(Math.ceil(h*0.5-5)+0.5);
            float[][]   PNetOutProb=new float[PNetOutSizeH][PNetOutSizeW];;
            float[][][] PNetOutBias=new float[PNetOutSizeH][PNetOutSizeW][4];
            PNetForward(bm,PNetOutProb,PNetOutBias);
            //(3)数据解析
            Vector<Box> curBoxes=new Vector<Box>();
            generateBoxes(PNetOutProb,PNetOutBias,scale,PNetThreshold,curBoxes);
            //Log.i(TAG,"[*]CNN Output Box number:"+curBoxes.size()+" Scale:"+scale);
            //(4)nms 0.5
            nms(curBoxes,0.5f,"Union");
            //(5)add to totalBoxes
            for (int i=0;i<curBoxes.size();i++)
                if (!curBoxes.get(i).deleted)
                    totalBoxes.addElement(curBoxes.get(i));
            //Face Size等比递增
            currentFaceSize/=factor;
        }
        //NMS 0.7
        nms(totalBoxes,0.7f,"Union");
        //BBR
        BoundingBoxReggression(totalBoxes);
        return Utils.updateBoxes(totalBoxes);
    }
    //截取box中指定的矩形框(越界要处理),并resize到size*size大小,返回数据存放到data中。
    public Bitmap tmp_bm;
    private void crop_and_resize(Bitmap bitmap, Box box, int size, float[] data){
        //(2)crop and resize
        Matrix matrix = new Matrix();
        float scale=1.0f*size/box.width();
        matrix.postScale(scale, scale);
        Bitmap croped= Bitmap.createBitmap(bitmap, box.left(),box.top(),box.width(), box.height(),matrix,true);
        //(3)save
        int[] pixels_buf=new int[size*size];
        croped.getPixels(pixels_buf,0,croped.getWidth(),0,0,croped.getWidth(),croped.getHeight());
        float imageMean=127.5f;
        float imageStd=128;
        for (int i=0;i<pixels_buf.length;i++){
            final int val=pixels_buf[i];
            data[i * 3 + 0] = (((val >> 16) & 0xFF) - imageMean) / imageStd;
            data[i * 3 + 1] = (((val >> 8) & 0xFF) - imageMean) / imageStd;
            data[i * 3 + 2] = ((val & 0xFF) - imageMean) / imageStd;
        }
    }
    /*
     * RNET跑神经网络,将score和bias写入boxes
     */
    private void RNetForward(float[] RNetIn,Vector<Box> boxes){
        int num=RNetIn.length/24/24/3;
        //feed & run
        inferenceInterface.feed(RNetInName,RNetIn,num,24,24,3);
        inferenceInterface.run(RNetOutName,false);
        //fetch
        float[] RNetP=new float[num*2];
        float[] RNetB=new float[num*4];
        inferenceInterface.fetch(RNetOutName[0],RNetP);
        inferenceInterface.fetch(RNetOutName[1],RNetB);
        //转换
        for (int i=0;i<num;i++) {
            boxes.get(i).score = RNetP[i * 2 + 1];
            for (int j=0;j<4;j++)
                boxes.get(i).bbr[j]=RNetB[i*4+j];
        }
    }
    //Refine Net
    private Vector<Box> RNet(Bitmap bitmap, Vector<Box> boxes){
        //RNet Input Init
        int num=boxes.size();
        float[] RNetIn=new float[num*24*24*3];
        float[] curCrop=new float[24*24*3];
        int RNetInIdx=0;
        for (int i=0;i<num;i++){
            crop_and_resize(bitmap,boxes.get(i),24,curCrop);
            Utils.flip_diag(curCrop,24,24,3);
            //Log.i(TAG,"[*]Pixels values:"+curCrop[0]+" "+curCrop[1]);
            for (int j=0;j<curCrop.length;j++) RNetIn[RNetInIdx++]= curCrop[j];
        }
        //Run RNet
        RNetForward(RNetIn,boxes);
        //RNetThreshold
        for (int i=0;i<num;i++)
            if (boxes.get(i).score<RNetThreshold)
                boxes.get(i).deleted=true;
        //Nms
        nms(boxes,0.7f,"Union");
        BoundingBoxReggression(boxes);
        return Utils.updateBoxes(boxes);
    }
    /*
     * ONet跑神经网络,将score和bias写入boxes
     */
    private void ONetForward(float[] ONetIn,Vector<Box> boxes){
        int num=ONetIn.length/48/48/3;
        //feed & run
        inferenceInterface.feed(ONetInName,ONetIn,num,48,48,3);
        inferenceInterface.run(ONetOutName,false);
        //fetch
        float[] ONetP=new float[num*2]; //prob
        float[] ONetB=new float[num*4]; //bias
        float[] ONetL=new float[num*10]; //landmark
        inferenceInterface.fetch(ONetOutName[0],ONetP);
        inferenceInterface.fetch(ONetOutName[1],ONetB);
        inferenceInterface.fetch(ONetOutName[2],ONetL);
        //转换
        for (int i=0;i<num;i++) {
            //prob
            boxes.get(i).score = ONetP[i * 2 + 1];
            //bias
            for (int j=0;j<4;j++)
                boxes.get(i).bbr[j]=ONetB[i*4+j];

            //landmark
            for (int j=0;j<5;j++) {
                int x=boxes.get(i).left()+(int) (ONetL[i * 10 + j]*boxes.get(i).width());
                int y= boxes.get(i).top()+(int) (ONetL[i * 10 + j +5]*boxes.get(i).height());
                boxes.get(i).landmark[j] = new Point(x,y);
                //Log.i(TAG,"[*] landmarkd "+x+ "  "+y);
            }
        }
    }
    //ONet
    private Vector<Box> ONet(Bitmap bitmap, Vector<Box> boxes){
        //ONet Input Init
        int num=boxes.size();
        float[] ONetIn=new float[num*48*48*3];
        float[] curCrop=new float[48*48*3];
        int ONetInIdx=0;
        for (int i=0;i<num;i++){
            crop_and_resize(bitmap,boxes.get(i),48,curCrop);
            Utils.flip_diag(curCrop,48,48,3);
            for (int j=0;j<curCrop.length;j++) ONetIn[ONetInIdx++]= curCrop[j];
        }
        //Run ONet
        ONetForward(ONetIn,boxes);
        //ONetThreshold
        for (int i=0;i<num;i++)
            if (boxes.get(i).score<ONetThreshold)
                boxes.get(i).deleted=true;
        BoundingBoxReggression(boxes);
        //Nms
        nms(boxes,0.7f,"Min");
        return Utils.updateBoxes(boxes);
    }
    private void square_limit(Vector<Box> boxes, int w, int h){
        //square
        for (int i=0;i<boxes.size();i++) {
            boxes.get(i).toSquareShape();
            boxes.get(i).limit_square(w,h);
        }
    }
    /*
     * 参数:
     *   bitmap:要处理的图片
     *   minFaceSize:最小的人脸像素值.(此值越大,检测越快)
     * 返回:
     *   人脸框
     */
    public Vector<Box> detectFaces(Bitmap bitmap, int minFaceSize) {
        long t_start = System.currentTimeMillis();
        //【1】PNet generate candidate boxes
        Vector<Box> boxes=PNet(bitmap,minFaceSize);
        square_limit(boxes,bitmap.getWidth(),bitmap.getHeight());
        //【2】RNet
        boxes=RNet(bitmap,boxes);
        square_limit(boxes,bitmap.getWidth(),bitmap.getHeight());
        //【3】ONet
        boxes=ONet(bitmap,boxes);
        //return
        Log.i(TAG,"[*]Mtcnn Detection Time:"+(System.currentTimeMillis()-t_start));
        lastProcessTime=(System.currentTimeMillis()-t_start);
        return  boxes;
    }
}

四、视频流数据处理

由于vlc播放的流媒体视频格式是nv12,需要将其转为nv21,并保存为bitmap

  • 1、首先给出nv21转为nv21方法
private void NV12ToNV21(byte[] nv12, byte[] nv21, int width, int height) {
        if (nv21 == null || nv12 == null) return;
        int framesize = width * height;
        int i = 0, j = 0;
        //System.arraycopy(nv21, test, nv12, test, framesize);
        for (i = 0; i < framesize; i++) {
            nv21[i] = nv12[i];
        }
        for (j = 0; j < framesize / 2; j += 2) {
            nv21[framesize + j] = nv12[j + framesize + 1];
        }
        for (j = 0; j < framesize / 2; j += 2) {
            nv21[framesize + j + 1] = nv12[j + framesize];
        }
    }
  • 2、然后给出nv21高效率转换为bitmap的方法
    可以查看此前的一篇文章 nv21高效率转换为bitmap
  • 3、调用mtcnn的人脸检测方法
Vector boxes = mtcnn.detectFaces(bitmap, 20);
  • 4、根据返回的数据 ,标记人脸
protected void drawAnim(Vector<Box> faces, SurfaceView outputView, float scale_bit, int cameraId, String fps) {
        Paint paint = new Paint();
        Canvas canvas = ((SurfaceView) outputView).getHolder().lockCanvas();
        if (canvas != null) {
            try {
                int viewH = outputView.getHeight();
                int viewW = outputView.getWidth();
//                DLog.d("viewW:"+viewW+",viewH:"+viewH);
                canvas.drawColor(0, PorterDuff.Mode.CLEAR);
                if (faces == null || faces.size() == 0) return;
                for (int i = 0; i < faces.size(); i++) {
                    paint.setColor(Color.BLUE);
                    int size = DisplayUtil.dip2px(this, 3);
                    paint.setStrokeWidth(size);
                    paint.setStyle(Paint.Style.STROKE);
                    Box box = faces.get(i);
                    float[] rect = box.transform2float();
                    float x1 = rect[0] * scale_bit;
                    float y1 = rect[1] * scale_bit;
                    float rect_width = rect[2] * 0.5F;
                    RectF rectf = new RectF(x1, y1, x1 + rect_width, y1 + rect_width);
                    canvas.drawRect(rectf, paint);
                }

            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                ((SurfaceView) outputView).getHolder().unlockCanvasAndPost(canvas);
            }
        }
    }

项目源码

https://github.com/cayden/facesample

本项目主要基于vlc来播放流媒体视频

本项目主要基于vlc来播放流媒体视频

主要包含以下内容

  • 1、使用已经编译的libvlc来播放流媒体视频
  • 2、使用MTCNN进行人脸识别并标记人脸
  • 3、保存标记的人脸图片
  • 4、使用FACENET进行人脸比对
  • 未完待续…
  • 1, 获取返回的视频流数据
  • 2, 将数据nv12转换为nv21,并保存图片
  • 1, added libvlc
  • 2, support for playing rtsp video stream

感谢大家的阅读,也希望能转发并关注我的公众号

MTCNN移植安卓并检测视频中人脸

以上所述就是小编给大家介绍的《MTCNN移植安卓并检测视频中人脸》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Ajax实战

Ajax实战

Dave Crane Eric Pascarello / 李锟(网名dlee) / 人民邮电出版社 / 2006年4月 / 69

本书是目前 Ajax 领域最为全面深入的一本著作,其中不仅有对于基础知识的介绍,还有对于 Ajax 开发中重大的体系架构问题的深入探讨,总结了大量 Ajax 开发中的设计模式,并讨论了框架、安全性与性能等等。书中提供了几个典型的例子,兼顾各种开发平台,这些例子的代码稍作修改就可以直接应用于项目开发之中,代码源文件可以从图灵网站下载。本书内容广泛且深入,同时适用于各个层次的 Web 应用开发人员。一起来看看 《Ajax实战》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

随机密码生成器
随机密码生成器

多种字符组合密码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具