内容简介:版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cuiran/article/details/85329317
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cuiran/article/details/85329317
继续此前的文章,使用vlc播放了rtsp流媒体视频后,想检测视频中的人脸,之前采用了opencv但是遇到低头、抬头和侧脸时候,效果就不太好。所以本篇介绍如何使用mtcnn来检测视频中的人脸。
大致流程:
一、Tensorflow 模型固化
将PNet、ONet、RNet 网络参数.npy固化成.pb格式,方便 java 载入, 固化后的文件在assets中,文件名mtcnn_freezed_model.pb。
二、引入android tensorflow lite 库
只需在build.gradle(module)最后添加以下几行语句即可。
dependencies { implementation fileTree(include: ['*.jar'], dir: 'libs') implementation 'com.android.support:appcompat-v7:27.1.1' implementation 'com.android.support.constraint:constraint-layout:1.1.3' testImplementation 'junit:junit:4.12' androidTestImplementation 'com.android.support.test:runner:1.0.2' androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2' compile(name: 'libvlc-3.0.0', ext: 'aar') implementation files('libs/androidutils.jar') compile 'org.tensorflow:tensorflow-android:+' implementation files('libs/libutils.jar') }
三、新建MTCNN类
该类包含加载模型文件,并检测bitmap中的人脸
package com.cayden.face.facenet; import android.content.res.AssetManager; import android.graphics.Bitmap; import android.graphics.Matrix; import android.graphics.Point; import android.util.Log; import com.cayden.face.FaceApplication; import org.tensorflow.contrib.android.TensorFlowInferenceInterface; import java.util.Vector; import static java.lang.Math.max; import static java.lang.Math.min; /** * Created by caydencui on 2018/9/6. */ public class MTCNN { //参数 private float factor=0.709f; private float PNetThreshold=0.6f; private float RNetThreshold=0.7f; private float ONetThreshold=0.7f; //MODEL PATH private static final String MODEL_FILE = "file:///android_asset/mtcnn_freezed_model.pb"; //tensor name private static final String PNetInName ="pnet/input:0"; private static final String[] PNetOutName =new String[]{"pnet/prob1:0","pnet/conv4-2/BiasAdd:0"}; private static final String RNetInName ="rnet/input:0"; private static final String[] RNetOutName =new String[]{ "rnet/prob1:0","rnet/conv5-2/conv5-2:0",}; private static final String ONetInName ="onet/input:0"; private static final String[] ONetOutName =new String[]{ "onet/prob1:0","onet/conv6-2/conv6-2:0","onet/conv6-3/conv6-3:0"}; private static class SingletonInstance { private static final MTCNN INSTANCE = new MTCNN(); } public static MTCNN getInstance() { return SingletonInstance.INSTANCE; } //安卓相关 public long lastProcessTime; //最后一张图片处理的时间ms private static final String TAG="MTCNN"; private AssetManager assetManager; private TensorFlowInferenceInterface inferenceInterface; private MTCNN() { assetManager= FaceApplication.getMyApplication().getAssets(); loadModel(); } private boolean loadModel() { //AssetManager try { inferenceInterface = new TensorFlowInferenceInterface(assetManager, MODEL_FILE); Log.d("MTCNN","[*]load model success"); }catch(Exception e){ Log.e("MTCNN","[*]load model failed"+e); return false; } return true; } //读取Bitmap像素值,预处理(-127.5 /128),转化为一维数组返回 private float[] normalizeImage(Bitmap bitmap){ int w=bitmap.getWidth(); int h=bitmap.getHeight(); float[] floatValues=new float[w*h*3]; int[] intValues=new int[w*h]; bitmap.getPixels(intValues,0,bitmap.getWidth(),0,0,bitmap.getWidth(),bitmap.getHeight()); float imageMean=127.5f; float imageStd=128; for (int i=0;i<intValues.length;i++){ final int val=intValues[i]; floatValues[i * 3 + 0] = (((val >> 16) & 0xFF) - imageMean) / imageStd; floatValues[i * 3 + 1] = (((val >> 8) & 0xFF) - imageMean) / imageStd; floatValues[i * 3 + 2] = ((val & 0xFF) - imageMean) / imageStd; } return floatValues; } /* 检测人脸,minSize是最小的人脸像素值 */ private Bitmap bitmapResize(Bitmap bm, float scale) { int width = bm.getWidth(); int height = bm.getHeight(); // CREATE A MATRIX FOR THE MANIPULATION。matrix指定图片仿射变换参数 Matrix matrix = new Matrix(); // RESIZE THE BIT MAP matrix.postScale(scale, scale); Bitmap resizedBitmap = Bitmap.createBitmap( bm, 0, 0, width, height, matrix, true); return resizedBitmap; } //输入前要翻转,输出也要翻转 private int PNetForward(Bitmap bitmap, float [][]PNetOutProb, float[][][]PNetOutBias){ int w=bitmap.getWidth(); int h=bitmap.getHeight(); float[] PNetIn=normalizeImage(bitmap); Utils.flip_diag(PNetIn,h,w,3); //沿着对角线翻转 inferenceInterface.feed(PNetInName,PNetIn,1,w,h,3); inferenceInterface.run(PNetOutName,false); int PNetOutSizeW=(int) Math.ceil(w*0.5-5); int PNetOutSizeH=(int) Math.ceil(h*0.5-5); float[] PNetOutP=new float[PNetOutSizeW*PNetOutSizeH*2]; float[] PNetOutB=new float[PNetOutSizeW*PNetOutSizeH*4]; inferenceInterface.fetch(PNetOutName[0],PNetOutP); inferenceInterface.fetch(PNetOutName[1],PNetOutB); //【写法一】先翻转,后转为2/3维数组 Utils.flip_diag(PNetOutP,PNetOutSizeW,PNetOutSizeH,2); Utils.flip_diag(PNetOutB,PNetOutSizeW,PNetOutSizeH,4); Utils.expand(PNetOutB,PNetOutBias); Utils.expandProb(PNetOutP,PNetOutProb); /* *【写法二】这个比较快,快了3ms。意义不大,用上面的方法比较直观 for (int y=0;y<PNetOutSizeH;y++) for (int x=0;x<PNetOutSizeW;x++){ int idx=PNetOutSizeH*x+y; PNetOutProb[y][x]=PNetOutP[idx*2+1]; for(int i=0;i<4;i++) PNetOutBias[y][x][i]=PNetOutB[idx*4+i]; } */ return 0; } //Non-Maximum Suppression //nms,不符合条件的deleted设置为true private void nms(Vector<Box> boxes, float threshold, String method){ //NMS.两两比对 //int delete_cnt=0; for(int i=0;i<boxes.size();i++) { Box box = boxes.get(i); if (!box.deleted) { //score<0表示当前矩形框被删除 for (int j = i + 1; j < boxes.size(); j++) { Box box2=boxes.get(j); if (!box2.deleted) { int x1 = max(box.box[0], box2.box[0]); int y1 = max(box.box[1], box2.box[1]); int x2 = min(box.box[2], box2.box[2]); int y2 = min(box.box[3], box2.box[3]); if (x2 < x1 || y2 < y1) continue; int areaIoU = (x2 - x1 + 1) * (y2 - y1 + 1); float iou=0f; if (method.equals("Union")) iou = 1.0f*areaIoU / (box.area() + box2.area() - areaIoU); else if (method.equals("Min")) iou= 1.0f*areaIoU / (min(box.area(),box2.area())); if (iou >= threshold) { //删除prob小的那个框 if (box.score>box2.score) box2.deleted=true; else box.deleted=true; //delete_cnt++; } } } } } //Log.i(TAG,"[*]sum:"+boxes.size()+" delete:"+delete_cnt); } private int generateBoxes(float[][] prob,float[][][]bias,float scale,float threshold,Vector<Box> boxes){ int h=prob.length; int w=prob[0].length; //Log.i(TAG,"[*]height:"+prob.length+" width:"+prob[0].length); for (int y=0;y<h;y++) for (int x=0;x<w;x++){ float score=prob[y][x]; //only accept prob >threadshold(0.6 here) if (score>PNetThreshold){ Box box=new Box(); //score box.score=score; //box box.box[0]= Math.round(x*2/scale); box.box[1]= Math.round(y*2/scale); box.box[2]= Math.round((x*2+11)/scale); box.box[3]= Math.round((y*2+11)/scale); //bbr for(int i=0;i<4;i++) box.bbr[i]=bias[y][x][i]; //add boxes.addElement(box); } } return 0; } private void BoundingBoxReggression(Vector<Box> boxes){ for (int i=0;i<boxes.size();i++) boxes.get(i).calibrate(); } //Pnet + Bounding Box Regression + Non-Maximum Regression /* NMS执行完后,才执行Regression * (1) For each scale , use NMS with threshold=0.5 * (2) For all candidates , use NMS with threshold=0.7 * (3) Calibrate Bounding Box * 注意:CNN输入图片最上面一行,坐标为[0..width,0]。所以Bitmap需要对折后再跑网络;网络输出同理. */ private Vector<Box> PNet(Bitmap bitmap, int minSize){ int whMin=min(bitmap.getWidth(),bitmap.getHeight()); float currentFaceSize=minSize; //currentFaceSize=minSize/(factor^k) k=0,1,2... until excced whMin Vector<Box> totalBoxes=new Vector<Box>(); //【1】Image Paramid and Feed to Pnet while (currentFaceSize<=whMin){ float scale=12.0f/currentFaceSize; //(1)Image Resize Bitmap bm=bitmapResize(bitmap,scale); int w=bm.getWidth(); int h=bm.getHeight(); //(2)RUN CNN int PNetOutSizeW=(int)(Math.ceil(w*0.5-5)+0.5); int PNetOutSizeH=(int)(Math.ceil(h*0.5-5)+0.5); float[][] PNetOutProb=new float[PNetOutSizeH][PNetOutSizeW];; float[][][] PNetOutBias=new float[PNetOutSizeH][PNetOutSizeW][4]; PNetForward(bm,PNetOutProb,PNetOutBias); //(3)数据解析 Vector<Box> curBoxes=new Vector<Box>(); generateBoxes(PNetOutProb,PNetOutBias,scale,PNetThreshold,curBoxes); //Log.i(TAG,"[*]CNN Output Box number:"+curBoxes.size()+" Scale:"+scale); //(4)nms 0.5 nms(curBoxes,0.5f,"Union"); //(5)add to totalBoxes for (int i=0;i<curBoxes.size();i++) if (!curBoxes.get(i).deleted) totalBoxes.addElement(curBoxes.get(i)); //Face Size等比递增 currentFaceSize/=factor; } //NMS 0.7 nms(totalBoxes,0.7f,"Union"); //BBR BoundingBoxReggression(totalBoxes); return Utils.updateBoxes(totalBoxes); } //截取box中指定的矩形框(越界要处理),并resize到size*size大小,返回数据存放到data中。 public Bitmap tmp_bm; private void crop_and_resize(Bitmap bitmap, Box box, int size, float[] data){ //(2)crop and resize Matrix matrix = new Matrix(); float scale=1.0f*size/box.width(); matrix.postScale(scale, scale); Bitmap croped= Bitmap.createBitmap(bitmap, box.left(),box.top(),box.width(), box.height(),matrix,true); //(3)save int[] pixels_buf=new int[size*size]; croped.getPixels(pixels_buf,0,croped.getWidth(),0,0,croped.getWidth(),croped.getHeight()); float imageMean=127.5f; float imageStd=128; for (int i=0;i<pixels_buf.length;i++){ final int val=pixels_buf[i]; data[i * 3 + 0] = (((val >> 16) & 0xFF) - imageMean) / imageStd; data[i * 3 + 1] = (((val >> 8) & 0xFF) - imageMean) / imageStd; data[i * 3 + 2] = ((val & 0xFF) - imageMean) / imageStd; } } /* * RNET跑神经网络,将score和bias写入boxes */ private void RNetForward(float[] RNetIn,Vector<Box> boxes){ int num=RNetIn.length/24/24/3; //feed & run inferenceInterface.feed(RNetInName,RNetIn,num,24,24,3); inferenceInterface.run(RNetOutName,false); //fetch float[] RNetP=new float[num*2]; float[] RNetB=new float[num*4]; inferenceInterface.fetch(RNetOutName[0],RNetP); inferenceInterface.fetch(RNetOutName[1],RNetB); //转换 for (int i=0;i<num;i++) { boxes.get(i).score = RNetP[i * 2 + 1]; for (int j=0;j<4;j++) boxes.get(i).bbr[j]=RNetB[i*4+j]; } } //Refine Net private Vector<Box> RNet(Bitmap bitmap, Vector<Box> boxes){ //RNet Input Init int num=boxes.size(); float[] RNetIn=new float[num*24*24*3]; float[] curCrop=new float[24*24*3]; int RNetInIdx=0; for (int i=0;i<num;i++){ crop_and_resize(bitmap,boxes.get(i),24,curCrop); Utils.flip_diag(curCrop,24,24,3); //Log.i(TAG,"[*]Pixels values:"+curCrop[0]+" "+curCrop[1]); for (int j=0;j<curCrop.length;j++) RNetIn[RNetInIdx++]= curCrop[j]; } //Run RNet RNetForward(RNetIn,boxes); //RNetThreshold for (int i=0;i<num;i++) if (boxes.get(i).score<RNetThreshold) boxes.get(i).deleted=true; //Nms nms(boxes,0.7f,"Union"); BoundingBoxReggression(boxes); return Utils.updateBoxes(boxes); } /* * ONet跑神经网络,将score和bias写入boxes */ private void ONetForward(float[] ONetIn,Vector<Box> boxes){ int num=ONetIn.length/48/48/3; //feed & run inferenceInterface.feed(ONetInName,ONetIn,num,48,48,3); inferenceInterface.run(ONetOutName,false); //fetch float[] ONetP=new float[num*2]; //prob float[] ONetB=new float[num*4]; //bias float[] ONetL=new float[num*10]; //landmark inferenceInterface.fetch(ONetOutName[0],ONetP); inferenceInterface.fetch(ONetOutName[1],ONetB); inferenceInterface.fetch(ONetOutName[2],ONetL); //转换 for (int i=0;i<num;i++) { //prob boxes.get(i).score = ONetP[i * 2 + 1]; //bias for (int j=0;j<4;j++) boxes.get(i).bbr[j]=ONetB[i*4+j]; //landmark for (int j=0;j<5;j++) { int x=boxes.get(i).left()+(int) (ONetL[i * 10 + j]*boxes.get(i).width()); int y= boxes.get(i).top()+(int) (ONetL[i * 10 + j +5]*boxes.get(i).height()); boxes.get(i).landmark[j] = new Point(x,y); //Log.i(TAG,"[*] landmarkd "+x+ " "+y); } } } //ONet private Vector<Box> ONet(Bitmap bitmap, Vector<Box> boxes){ //ONet Input Init int num=boxes.size(); float[] ONetIn=new float[num*48*48*3]; float[] curCrop=new float[48*48*3]; int ONetInIdx=0; for (int i=0;i<num;i++){ crop_and_resize(bitmap,boxes.get(i),48,curCrop); Utils.flip_diag(curCrop,48,48,3); for (int j=0;j<curCrop.length;j++) ONetIn[ONetInIdx++]= curCrop[j]; } //Run ONet ONetForward(ONetIn,boxes); //ONetThreshold for (int i=0;i<num;i++) if (boxes.get(i).score<ONetThreshold) boxes.get(i).deleted=true; BoundingBoxReggression(boxes); //Nms nms(boxes,0.7f,"Min"); return Utils.updateBoxes(boxes); } private void square_limit(Vector<Box> boxes, int w, int h){ //square for (int i=0;i<boxes.size();i++) { boxes.get(i).toSquareShape(); boxes.get(i).limit_square(w,h); } } /* * 参数: * bitmap:要处理的图片 * minFaceSize:最小的人脸像素值.(此值越大,检测越快) * 返回: * 人脸框 */ public Vector<Box> detectFaces(Bitmap bitmap, int minFaceSize) { long t_start = System.currentTimeMillis(); //【1】PNet generate candidate boxes Vector<Box> boxes=PNet(bitmap,minFaceSize); square_limit(boxes,bitmap.getWidth(),bitmap.getHeight()); //【2】RNet boxes=RNet(bitmap,boxes); square_limit(boxes,bitmap.getWidth(),bitmap.getHeight()); //【3】ONet boxes=ONet(bitmap,boxes); //return Log.i(TAG,"[*]Mtcnn Detection Time:"+(System.currentTimeMillis()-t_start)); lastProcessTime=(System.currentTimeMillis()-t_start); return boxes; } }
四、视频流数据处理
由于vlc播放的流媒体视频格式是nv12,需要将其转为nv21,并保存为bitmap
- 1、首先给出nv21转为nv21方法
private void NV12ToNV21(byte[] nv12, byte[] nv21, int width, int height) { if (nv21 == null || nv12 == null) return; int framesize = width * height; int i = 0, j = 0; //System.arraycopy(nv21, test, nv12, test, framesize); for (i = 0; i < framesize; i++) { nv21[i] = nv12[i]; } for (j = 0; j < framesize / 2; j += 2) { nv21[framesize + j] = nv12[j + framesize + 1]; } for (j = 0; j < framesize / 2; j += 2) { nv21[framesize + j + 1] = nv12[j + framesize]; } }
- 2、然后给出nv21高效率转换为bitmap的方法
可以查看此前的一篇文章 nv21高效率转换为bitmap - 3、调用mtcnn的人脸检测方法
Vector boxes = mtcnn.detectFaces(bitmap, 20);
- 4、根据返回的数据 ,标记人脸
protected void drawAnim(Vector<Box> faces, SurfaceView outputView, float scale_bit, int cameraId, String fps) { Paint paint = new Paint(); Canvas canvas = ((SurfaceView) outputView).getHolder().lockCanvas(); if (canvas != null) { try { int viewH = outputView.getHeight(); int viewW = outputView.getWidth(); // DLog.d("viewW:"+viewW+",viewH:"+viewH); canvas.drawColor(0, PorterDuff.Mode.CLEAR); if (faces == null || faces.size() == 0) return; for (int i = 0; i < faces.size(); i++) { paint.setColor(Color.BLUE); int size = DisplayUtil.dip2px(this, 3); paint.setStrokeWidth(size); paint.setStyle(Paint.Style.STROKE); Box box = faces.get(i); float[] rect = box.transform2float(); float x1 = rect[0] * scale_bit; float y1 = rect[1] * scale_bit; float rect_width = rect[2] * 0.5F; RectF rectf = new RectF(x1, y1, x1 + rect_width, y1 + rect_width); canvas.drawRect(rectf, paint); } } catch (Exception e) { e.printStackTrace(); } finally { ((SurfaceView) outputView).getHolder().unlockCanvasAndPost(canvas); } } }
项目源码
https://github.com/cayden/facesample
本项目主要基于vlc来播放流媒体视频
本项目主要基于vlc来播放流媒体视频
主要包含以下内容
- 1、使用已经编译的libvlc来播放流媒体视频
- 2、使用MTCNN进行人脸识别并标记人脸
- 3、保存标记的人脸图片
- 4、使用FACENET进行人脸比对
- 未完待续…
- 1, 获取返回的视频流数据
- 2, 将数据nv12转换为nv21,并保存图片
- 1, added libvlc
- 2, support for playing rtsp video stream
感谢大家的阅读,也希望能转发并关注我的公众号
以上所述就是小编给大家介绍的《MTCNN移植安卓并检测视频中人脸》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 移植 Lua 到鸿蒙:首个移植成功的编程语言
- 移植luaCoco
- zeppelin 安装移植简述
- C 版本 MQTT 移植 Android
- 从Redis到Codis移植实践
- Android QEMU 模拟器移植 - 编译
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
深度解析淘宝运营
刘涛 / 电子工业出版社 / 2015-9-1 / 49.00元
淘宝运营,仅有知识是不够的,还需要有系统的运营思路。为帮助广大电商从业者以及众多中小卖家更好地运营店铺,《深度解析淘宝运营》全面阐述了整个店铺运营的重点环节,包括淘宝搜索规则、打造爆款、店铺规划、客户服务、直通车、钻石展位、数据分析等内容。具体操作步骤翔实,并且结合笔者的实际操作经验,将各个环节最本质的一面透彻展现给读者,结合理论与实战,尽可能向读者展示一个最真实的运营核心。《深度解析淘宝运营》没......一起来看看 《深度解析淘宝运营》 这本书的介绍吧!
图片转BASE64编码
在线图片转Base64编码工具
html转js在线工具
html转js在线工具