kafka消息与同步机制

栏目: 后端 · 发布时间: 5年前

内容简介:producer 的deliver guarantee 可以通过request.required.acks参数的设置来进行调整:当producer向broker发送消息时,一旦这条消息被commit,因数replication的存在,它就不会丢。但是如果producer发送数据给broker后,遇到的网络问题而造成通信中断,那producer就无法判断该条消息是否已经commit。这一点有点像向一个自动生成primary key的数据库表中插入数据。虽然Kafka无法确定网络故障期间发生了什么,但是prod
kafka消息与同步机制

如上图所示:Producer根据指定的partition方法(默认round-robin、hash等),将消息发布到指定topic的partition里面;kafka集群接收到Producer发过来的消息后,将其持久化到硬盘,并保留消息指定时长(可配置),而不关注消息是否被消费;Consumer从kafka集群pull数据,并控制获取消息的offset。

下面讨论以下Kafka如何确保消息在producer和consumer之间的传输。producer与consumer有可能的delivery guarantee:

  • At most once 消息可能会丢,但绝不会重复传输
  • At least one 消息绝不会丢,但可能会重复传输
  • Exactly once 每条消息肯定会被传输一次且仅传输一次,很多时候这是用户所想要的

Producer

producer 的deliver guarantee 可以通过request.required.acks参数的设置来进行调整:

  • 0,相当于异步发送,消息发送完毕即offset增加,继续生产;相当于At most once;
  • 1,leader收到leader replica 对一个消息的接受ack才增加offset,然后继续生产;
  • -1,leader收到所有replica 对一个消息的接受ack才增加offset,然后继续生产;

当producer向broker发送消息时,一旦这条消息被commit,因数replication的存在,它就不会丢。但是如果producer发送数据给broker后,遇到的网络问题而造成通信中断,那producer就无法判断该条消息是否已经commit。这一点有点像向一个自动生成primary key的数据库表中插入数据。虽然Kafka无法确定网络故障期间发生了什么,但是producer可以生成一种类似于primary key的东西,发生故障时幂等性的retry多次,这样就做到了Exactly one。截止到目前(Kafka 0.8.2版本,2015-01-25),这一feature还并未实现,有希望在Kafka未来的版本中实现。(所以目前默认情况下一条消息从producer和broker是确保了At least once,但可通过设置producer异步发送实现At most once)。

Consumer

consumer在从broker读取消息后,可以选择commit,该操作会在Zookeeper中存下该consumer在该partition下读取的消息的offset。该consumer下一次再读该partition时会从下一条开始读取。如未commit,下一次读取的开始位置会跟上一次commit之后的开始位置相同。当然可以将consumer设置为autocommit,即consumer一旦读到数据立即自动commit。如果只讨论这一读取消息的过程,那Kafka是确保了Exactly once。但实际上实际使用中consumer并非读取完数据就结束了,而是要进行进一步处理,而数据处理与commit的顺序在很大程度上决定了消息从broker和consumer的delivery guarantee semantic。

读完消息先commit再处理消息。这种模式下,如果consumer在commit后还没来得及处理消息就crash了,下次重新开始工作后就无法读到刚刚已提交而未处理的消息,这就对应于At most once

读完消息先处理再commit。这种模式下,如果处理完了消息在commit之前consumer crash了,下次重新开始工作时还会处理刚刚未commit的消息,实际上该消息已经被处理过了。这就对应于At least once(默认)

如果一定要做到Exactly once,就需要协调offset和实际操作的输出。精典的做法是引入两阶段提交。如果能让offset和操作输入存在同一个地方,会更简洁和通用。这种方式可能更好,因为许多输出系统可能不支持两阶段提交。比如,consumer拿到数据后可能把数据放到HDFS,如果把最新的offset和数据本身一起写到HDFS,那就可以保证数据的输出和offset的更新要么都完成,要么都不完成,间接实现Exactly once。(目前就high level API而言,offset是存于Zookeeper中的,无法存于HDFS,而low level API的offset是由自己去维护的,可以将之存于HDFS中)

消息传递过程

Producer在发布消息到某个Partition时,先通过Zookeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少(也即该Partition有多少个Replica),Producer只将该消息发送到该Partition的Leader。Leader会将该消息写入其本地Log。每个Follower都从Leader pull数据。这种方式上,Follower存储的数据顺序与Leader保持一致。Follower在收到该消息并写入其Log后,向Leader发送ACK。一旦Leader收到了ISR中的所有Replica的ACK,该消息就被认为已经commit了,Leader将增加HW(即offset)并且向Producer发送ACK。

为了提高性能,每个Follower在接收到数据后就立马向Leader发送ACK,而非等到数据写入Log中。因此,对于已经commit的消息,Kafka只能保证它被存于多个Replica的内存中,而不能保证它们被持久化到磁盘中,也就不能完全保证异常发生后该条消息一定能被Consumer消费。但考虑到这种场景非常少见,可以认为这种方式在性能和数据持久化上做了一个比较好的平衡。在将来的版本中,Kafka会考虑提供更高的持久性。

Consumer读消息也是从Leader读取,只有被commit过的消息(offset低于HW的消息)才会暴露给Consumer。

Kafka Replication的数据流如下图所示:

kafka消息与同步机制

producer 写入消息序列图如下所示

kafka消息与同步机制

具体步骤总结下来如下:

1. producer 先从 zookeeper 的 "/brokers/.../state" 节点找到该 partition 的 leader

2. producer 将消息发送给该 leader

3. leader 将消息写入本地 log

4. followers 从 leader pull 消息,写入本地 log 后 leader 发送 ACK

5. leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK

参考连接:

https://blog.csdn.net/wingofeagle/article/details/60965867


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

嵌入式系统开发之道

嵌入式系统开发之道

2011-12 / 69.00元

《嵌入式系统开发之道:菜鸟成长日志与项目经理的私房菜》用平易朴实的语言,以一个完整的嵌入式系统的开发流程为架构,通过一位“菜鸟”工程师与项目经理的诙谐对话,故事性地带出嵌入式系统概念及开发要素,并点出要成为一名称职的嵌入式系统工程师,在实际工作中所必须具备的各项知识及技能。 《嵌入式系统开发之道:菜鸟成长日志与项目经理的私房菜》可以分为三大部分:第1、3、4、17、18、19章和附录D为嵌入......一起来看看 《嵌入式系统开发之道》 这本书的介绍吧!

SHA 加密
SHA 加密

SHA 加密工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具