js 中的 number 为何很怪异
栏目: JavaScript · 发布时间: 5年前
内容简介:声明:需要读者对二进制有一定的了解对于 JavaScript 开发者来说,或多或少都遇到过如果想要弄明白为什么会出现这些奇怪现象,首先要弄清楚
js 中的 number 为何很怪异
声明:需要读者对二进制有一定的了解
对于 JavaScript 开发者来说,或多或少都遇到过 js
在处理数字上的奇怪现象,比如:
> 0.1 + 0.2 0.30000000000000004 > 0.1 + 1 - 1 0.10000000000000009 > 0.1 * 0.2 0.020000000000000004 > Math.pow(2, 53) 9007199254740992 > Math.pow(2, 53) + 1 9007199254740992 > Math.pow(2, 53) + 3 9007199254740996
如果想要弄明白为什么会出现这些奇怪现象,首先要弄清楚 JavaScript 是怎样编码数字的 。
1. JavaScript 是怎样编码数字的
JavaScript 中的数字,不管是整数、小数、分数,还是正数、负数,全部是浮点数,都是用 4 个字节(64 位)来存储的。
一个数字(如 12
、 0.12
、 -999
)在内存中占用 4 个字节(64 位),存储方式如下:
0 - 51 52 - 62 63
符号位很好理解,用于指明是正数还是负数,且只有 1 位、两种情况(0 表示正数,1 表示负数)。
其他两部分是分数部分和指数部分,用于计算一个数的绝对值。
1.1 绝对值计算公式
1: abs = 1.f * 2 ^ (e - 1023) 0 < e < 2047 2: abs = 0.f * 2 ^ (e - 1022) e = 0, f > 0 3: abs = 0 e = 0, f = 0 4: abs = NaN e = 2047, f > 0 5: abs = ∞ (infinity, 无穷大) e = 2047, f = 0
说明:
-
这个公式是二进制的算法公式,结果用
abs
表示,分数部分用f
表示,指数部分用e
表示 -
2 ^ (e - 1023)
表示2
的e - 1023
次方 -
因为分数部分占 52 位,所以
f
的取值范围为00...00
(中间省略 48 个 0) 到11...11
(中间省略 48 个 1) -
因为指数部分占 11 位,所以
e
的取值范围为0
(00000000000
) 到2047
(11111111111
)
从上面的公式可以看出:
-
1
的存储方式:1.00 * 2 ^ (1023 - 1023)
(f = 0000..., e = 1023
,...
表示 48 个 0) -
2
的存储方式:1.00 * 2 ^ (1024 - 1023)
(f = 0000..., e = 1024
,...
表示 48 个 0) -
9
的存储方式:1.01 * 2 ^ (1025 - 1023)
(f = 0100..., e = 1025
,...
表示 48 个 0) -
0.5
的存储方式:1.00 * 2 ^ (1022 - 1023)
(f = 0000..., e = 1022
,...
表示 48 个 0) -
0.625
的存储方式:1.01 * 2 ^ (1021 - 1023)
(f = 0100..., e = 1021
,...
表示 48 个 0)
1.2 绝对值的取值范围与边界
从上面的公式可以看出:
1.2.1 0 < e < 2047
当 0 < e < 2047
时,取值范围为: f = 0, e = 1
到 f = 11...11, e = 2046
(中间省略 48 个 1)
即: Math.pow(2, -1022)
到 ~= Math.pow(2, 1024) - 1
( ~=
表示约等于)
这当中, ~= Math.pow(2, 1024) - 1
就是 Number.MAX_VALUE
的值, js
所能表示的最大数值。
1.2.2 e = 0, f > 0
当 e = 0, f > 0
时,取值范围为: f = 00...01, e = 0
(中间省略 48 个 0) 到 f = 11...11, e = 0
(中间省略 48 个 1)
即: Math.pow(2, -1074)
到 ~= Math.pow(2, -1022)
( ~=
表示约等于)
这当中, Math.pow(2, -1074)
就是 Number.MIN_VALUE
的值, js
所能表示的最小数值(绝对值)。
1.2.3 e = 0, f = 0
这只表示一个值 0
,但加上符号位,所以有 +0
与 -0
。
但在运算中:
> +0 === -0 true
1.2.4 e = 2047, f > 0
这只表示一种值 NaN
。
但在运算中:
> NaN == NaN false > NaN === NaN false
1.2.5 e = 2047, f = 0
这只表示一个值 ∞
(infinity, 无穷大)。
在运算中:
> Infinity === Infinity true > -Infinity === -Infinity true
1.3 绝对值的最大安全值
从上面可以看出,4 个字节能存储的最大数值是 Number.MAX_VALUE
的值,也就是 ~= Math.pow(2, 1024) - 1
。
但这个数值并不安全:从 1
到 Number.MAX_VALUE
中间的数字并不连续,而是离散的。
比如: Number.MAX_VALUE - 1
, Number.MAX_VALUE - 2
等数值都无法用公式得出,就存储不了。
所以这里引出了最大安全值 Number.MAX_SAFE_INTEGER
,也就是从 1
到 Number.MAX_SAFE_INTEGER
中间的数字都是连续的,处在这个范围内的数值计算都是安全的。
当 f = 11...11, e = 1075
(中间省略 48 个 1)时,取得这个值 111...11
(中间省略 48 个 1),即 Math.pow(2, 53) - 1
。
大于 Number.MAX_SAFE_INTEGER:Math.pow(2, 53) - 1
的数值都是离散的。
比如: Math.pow(2, 53) + 1
, Math.pow(2, 53) + 3
不能用公式得出,无法存储在内存中。
所以才会有文章开头的现象:
> Math.pow(2, 53) 9007199254740992 > Math.pow(2, 53) + 1 9007199254740992 > Math.pow(2, 53) + 3 9007199254740996
因为 Math.pow(2, 53) + 1
不能用公式得出,就无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数, Math.pow(2, 53)
,然后存储在内存中,这就是失真,即不安全。
1.4 小数的存储方式与计算
小数中,除了满足 m / (2 ^ n)
( m, n
都是整数)的小数可以用完整的 2 进制表示之外,其他的都不能用完整的 2 进制表示,只能无限的逼近一个 2 进制小数。
(注: [2]
表示二进制, ^
表示 N 次方)
0.5 = 1 / 2 = [2]0.1 0.875 = 7 / 8 = 1 / 2 + 1 / 4 + 1 / 8 = [2]0.111
# 0.3 的逼近 0.25 ([2]0.01) < 0.3 < 0.5 ([2]0.10) 0.296875 ([2]0.0100110) < 0.3 < 0.3046875 ([2]0.0100111) 0.2998046875 ([2]0.01001100110) < 0.3 < 0.30029296875 ([2]0.01001100111) ... 根据公式计算,直到把分数部分的 52 位填满,然后取最靠近的数 0.3 的存储方式:[2]0.010011001100110011001100110011001100110011001100110011 (f = 0011001100110011001100110011001100110011001100110011, e = 1021)
从上面可以看出,小数中大部分都只是近似值,只有少部分是真实值,所以只有这少部分的值(满足 m / (2 ^ n)
的小数)可以直接比较大小,其他的都不能直接比较。
> 0.5 + 0.125 === 0.625 true > 0.1 + 0.2 === 0.3 false
为了安全的比较两个小数,引入 Number.EPSILON [Math.pow(2, -52)]
来比较浮点数。
> Math.abs(0.1 + 0.2 - 0.3) < Number.EPSILON true
1.5 小数最大保留位数
js
从内存中读取一个数时,最大保留 17
位有效数字。
> 0.010011001100110011001100110011001100110011001100110011 0.30000000000000000 0.3
> 0.010011001100110011001100110011001100110011001100110010 0.29999999999999993
> 0.010011001100110011001100110011001100110011001100110100 0.30000000000000004
> 0.0000010100011110101110000101000111101011100001010001111100 0.020000000000000004
2. Number 对象中的常量
2.1 Number.EPSILON
表示 1 与 Number 可表示的大于 1 的最小的浮点数之间的差值。
Math.pow(2, -52)
用于浮点数之间安全的比较大小。
2.2 Number.MAX_SAFE_INTEGER
绝对值的最大安全值。
Math.pow(2, 53) - 1
2.3 Number.MAX_VALUE
js
所能表示的最大数值(4 个字节能存储的最大数值)。
~= Math.pow(2, 1024) - 1
2.4 Number.MIN_SAFE_INTEGER
最小安全值(包括符号)。
-(Math.pow(2, 53) - 1)
2.5 Number.MIN_VALUE
js
所能表示的最小数值(绝对值)。
Math.pow(2, -1074)
2.6 Number.NEGATIVE_INFINITY
负无穷大。
-Infinity
2.7 Number.POSITIVE_INFINITY
正无穷大。
+Infinity
2.8 Number.NaN
非数字。
3. 寻找奇怪现象的原因
3.1 为什么 0.1 + 0.2
结果是 0.30000000000000004
与 0.3
的逼近算法类似。
0.1 的存储方式:[2]0.00011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1019) 0.2 的存储方式:[2]0.0011001100110011001100110011001100110011001100110011010 (f = 1001100110011001100110011001100110011001100110011010, e = 1020)
0.1 + 0.2: 0.0100110011001100110011001100110011001100110011001100111 (f = 00110011001100110011001100110011001100110011001100111, e = 1021)
但 f = 00110011001100110011001100110011001100110011001100111
有 53 位,超过了正常的 52 位,无法存储,所以取最近的数:
0.1 + 0.2: 0.010011001100110011001100110011001100110011001100110100 (f = 0011001100110011001100110011001100110011001100110100, e = 1021)
js
读取这个数字为 0.30000000000000004
3.2 为什么 Math.pow(2, 53) + 1
结果是 Math.pow(2, 53)
因为 Math.pow(2, 53) + 1
不能用公式得出,无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数。
比这个数小的、最靠近的数:
Math.pow(2, 53) (f = 0000000000000000000000000000000000000000000000000000, e = 1076)
比这个数大的、最靠近的数:
Math.pow(2, 53) + 2 (f = 0000000000000000000000000000000000000000000000000001, e = 1076)
取第一个数: Math.pow(2, 53)
。
所以:
> Math.pow(2, 53) + 1 === Math.pow(2, 53) true
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Lighttpd
Andre Bogus / Packt Publishing / 2008-10 / 39.99
This is your fast guide to getting started and getting inside the Lighttpd web server. Written from a developer's perspective, this book helps you understand Lighttpd, and get it set up as securely an......一起来看看 《Lighttpd》 这本书的介绍吧!