聊聊flink的Queryable State

栏目: Java · 发布时间: 6年前

@Test
    public void testValueStateForQuery() throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment
                .createRemoteEnvironment("192.168.99.100", 8081, SubmitTest.JAR_FILE);
        env.addSource(new RandomTuple2Source())
                .keyBy(0) //key by first value of tuple
                .flatMap(new CountWindowAverage())
                .print();
        JobExecutionResult result = env.execute("testQueryableState");
        LOGGER.info("submit job result:{}",result);
    }
复制代码
  • 这里运行一个job,它对tuple的第一个值作为key,然后flatMap操作使用的是CountWindowAverage

CountWindowAverage

public class CountWindowAverage extends RichFlatMapFunction<Tuple2<Long, Long>, Tuple2<Long, Long>> {

    private transient ValueState<Tuple2<Long, Long>> sum; // a tuple containing the count and the sum

    @Override
    public void flatMap(Tuple2<Long, Long> input, Collector<Tuple2<Long, Long>> out) throws Exception {
        Tuple2<Long, Long> currentSum = sum.value();
        if(currentSum == null){
            currentSum = Tuple2.of(1L,input.f1);
        }else{
            currentSum.f0 += 1;
            currentSum.f1 += input.f1;
        }

        sum.update(currentSum);

        if (currentSum.f0 >= 2) {
            out.collect(new Tuple2<>(input.f0, currentSum.f1 / currentSum.f0));
            sum.clear();
        }
    }

    @Override
    public void open(Configuration config) {
        ValueStateDescriptor<Tuple2<Long, Long>> descriptor =
                new ValueStateDescriptor<>(
                        "average", // the state name
                        TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() {})); // type information
        descriptor.setQueryable("query-name");
        sum = getRuntimeContext().getState(descriptor);
    }
}
复制代码
  • CountWindowAverage通过ValueStateDescriptor的setQueryable("query-name")方法,将state声明为是queryable的

QueryableStateClient

@Test
    public void testQueryStateByJobId() throws InterruptedException, IOException {
        //get jobId from flink ui running job page
        JobID jobId = JobID.fromHexString("793edfa93f354aa0274f759cb13ce79e");
        long key = 1L;
        //flink-core-1.7.0-sources.jar!/org/apache/flink/configuration/QueryableStateOptions.java
        QueryableStateClient client = new QueryableStateClient("192.168.99.100", 9069);

        // the state descriptor of the state to be fetched.
        ValueStateDescriptor<Tuple2<Long, Long>> descriptor =
                new ValueStateDescriptor<>(
                        "average",
                        TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() {}));

        CompletableFuture<ValueState<Tuple2<Long, Long>>> resultFuture =
                client.getKvState(jobId, "query-name", key, BasicTypeInfo.LONG_TYPE_INFO, descriptor);

        LOGGER.info("get kv state return future, waiting......");
        // org.apache.flink.queryablestate.exceptions.UnknownKeyOrNamespaceException: Queryable State Server : No state for the specified key/namespace.
        ValueState<Tuple2<Long, Long>> res = resultFuture.join();
        LOGGER.info("query result:{}",res.value());
        client.shutdownAndWait();
    }
复制代码
  • 这里通过QueryableStateClient连接QueryableStateClientProxy进行query state;这里的jobId可以在job提交之后,通过ui界面查询得到,然后使用JobID.fromHexString方法转为JobID对象

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

深度学习框架PyTorch:入门与实践

深度学习框架PyTorch:入门与实践

陈云 / 电子工业出版社 / 2018-1 / 65

《深度学习框架PyTorch:入门与实践》从多维数组Tensor开始,循序渐进地带领读者了解PyTorch各方面的基础知识。结合基础知识和前沿研究,带领读者从零开始完成几个经典有趣的深度学习小项目,包括GAN生成动漫头像、AI滤镜、AI写诗等。《深度学习框架PyTorch:入门与实践》没有简单机械地介绍各个函数接口的使用,而是尝试分门别类、循序渐进地向读者介绍PyTorch的知识,希望读者对PyT......一起来看看 《深度学习框架PyTorch:入门与实践》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

MD5 加密
MD5 加密

MD5 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试