Facebook 开源首个全卷积语音识别工具包 wav2letter++

栏目: 软件资讯 · 发布时间: 5年前

内容简介:由于端到端语音识别技术能够轻易扩展至多种语言,同时能在多变的环境下保证识别质量,因此被普遍认为是一种高效且稳定的语音识别技术。虽说递归卷积神经网络在处理具有远程依赖性的建模任务上很占优势,如语言建模、机器翻译和语音合成等,然而在端到端语音识别任务上,循环架构才是业内的主流。

雷锋网 (公众号:雷锋网) AI 科技评论按: 近日,Facebook 人工智能研究院 ( FAIR ) 宣布开源首个全卷积语音识别 工具 包 wav2letter++。系统基于全卷积方法进行语音识别,训练语音识别端到端神经网络的速度是其他框架的 2 倍多。他们在博客中对此次开源进行了详细介绍。

Facebook 开源首个全卷积语音识别工具包 wav2letter++

由于端到端语音识别技术能够轻易扩展至多种语言,同时能在多变的环境下保证识别质量,因此被普遍认为是一种高效且稳定的语音识别技术。虽说递归卷积神经网络在处理具有远程依赖性的建模任务上很占优势,如语言建模、机器翻译和语音合成等,然而在端到端语音识别任务上,循环架构才是业内的主流。

有鉴于此,Facebook 人工智能研究院 (FAIR) 的语音小组上周推出首个全卷积语音识别系统,该系统完全由卷积层组成,取消了特征提取步骤,仅凭端到端训练对音频波形中的转录文字进行预测,再通过外部卷积语言模型对文字进行解码。随后 Facebook 宣布开源 wav2letter ++——这种高性能框架的出现,让端到端语音识别技术得以实现快速迭代,为技术将来的优化工作和模型调优打下夯实的基础。

与 wav2letter++ 一同宣布开源的,还有机器学习库 Flashlight。Flashlight 是建立在 C++基础之上的机器学习库,使用了 ArrayFire 张量库,并以 C++进行实时编译,目标是最大化 CPU 与 GPU 后端的效率和规模,而 wave2letter ++工具包建立在 Flashlight 基础上,同样使用 C++进行编写,以 ArrayFire 作为张量库。

这里着重介绍一下 ArrayFire,它可以在 CUDA GPU 和 CPU 支持的多种后端上被执行,支持多种音频文件格式(如 wav、flac 等),此外还支持多种功能类型,其中包括原始音频、线性缩放功率谱、log 梅尔谱 (MFSC) 和 MFCCs 等。

在 Facebook 对外发布论文中,wav2letter++被拿来与其他主流开源语音识别系统进行对比,发现 wav2letter++训练语音识别端到端神经网络速度是其他框架的 2 倍还多。其使用了 1 亿个参数的模型测试,使用从 1~64 个 GPU,且训练时间是线性变化的。

Facebook 开源首个全卷积语音识别工具包 wav2letter++

图片来源:Facebook

上面为系统的网络结构图,主要由 4 个部分组成:

可学习前端(Learnable front end):这部分包含宽度为 2 的卷积(用于模拟预加重流程)和宽度为 25 ms 的复卷积。在计算完平方模数后,由低通滤波器和步长执行抽取任务。最后应用于 log-compression 和 per-channel mean-variance normalization 上。

声学模型:这是一款带有门线性单元(GLU)的卷积神经网络,负责处理可学习前端的输出内容。基于自动分割准则,该模型在字母预测任务上进行训练。

语言模型:该卷积语言模型一共包含 14 个卷积残差块,并将门线性单元作为激活函数,主要用来对集束搜索解码器中语言模型的预备转录内容进行评分。

集束搜索解码器(Beam-search decoder):根据声学模型的输出内容生成词序列。

想深入了解系统背后运作原理感的同学,可以自行查阅完整内容:

https://arxiv.org/abs/1812.07625

wav2letter++: The Fastest Open-source Speech Recognition System

via https://opensource.fb.com/

雷锋网 AI 科技评论 雷锋网

雷锋网原创文章,未经授权禁止转载。详情见 转载须知

Facebook 开源首个全卷积语音识别工具包 wav2letter++

以上所述就是小编给大家介绍的《Facebook 开源首个全卷积语音识别工具包 wav2letter++》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

渐进增强的Web设计

渐进增强的Web设计

[美] Todd Parker、[英] Patty Toland、[英] Scott Jehl、[法] Maggie Costello Wachs / 牛化成 / 人民邮电出版社 / 2014-1 / 69.00

本书由全球著名Web设计公司Filament集团两位创始人和两位开发主力联手打造,其中Scott Jehl还是jQuery团队成员。四位作者具有多年的网站设计和开发经验,曾为网站、无线设备、Web应用设计过众多高度实用的用户界面,受到了高度赞扬。本书展示了如何利用渐进增强方法开发网站,从而获得最佳用户体验。本书既是理解渐进增强原则和益处的实用指南,也用详细的案例分析,目的是向设计师以及开发人员传授......一起来看看 《渐进增强的Web设计》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具