当机器拥有像人类一样的大脑,会怎么样?

栏目: 数据库 · 发布时间: 5年前

内容简介:本文为 AI 研习社编译的技术博客,原标题 :Machines with brains like ours- An intro to Deep Learning

当机器拥有像人类一样的大脑,会怎么样?

本文为 AI 研习社编译的技术博客,原标题 :

Machines with brains like ours- An intro to Deep Learning

作者 |   Mishaal Lakhani

翻译 |  Disillusion、 刘刘1126

校对 | 酱番梨       整理 | 菠萝妹

原文链接:

https://medium.com/@mishaallakhani/machines-with-brains-like-ours-an-intro-to-deep-learning-a5dff4c24e97

当机器拥有像人类一样的大脑,会怎么样?

生成星系图像,创作莎士比亚风格的作品,将地震预测时间准确度提高50000%,这些事情有什么共同之处吗?

很意外吧,这些都是由人工智能(AI)完成的。机器正变得越来越聪明,学习能力也越来越强,这使它们有别于以前的机器。实际上,人脑本身就是许多智能技术解决问题的灵感来源,它们通过机器学习,特别是深度学习来解决问题。

当机器拥有像人类一样的大脑,会怎么样?

机器学习是指让电脑获取数据、理解数据、学习数据,然后做出决策,但是我们并不需要对机器进行明确地编程。深度学习是机器学习的一个子领域,它的灵感来源于人类大脑的神经网络(我们的大脑用来处理信息的构造)。这些神经网络被叫做人工神经网络(ANNs),有时也被叫做神经网络、网络、或者模型。它们由一组被称为节点的单元(或者叫做人工神经元)组成,用来将信息从一个神经元传递到另一个神经元(和人类的大脑一样)。

当机器拥有像人类一样的大脑,会怎么样?

一个基本的人工智能网络

当一个神经元接收、处理和传递信号给另一个神经元时,这个过程称为传输。这个过程主要包含三层:输入层、隐藏层和输出层。

    人工神经网络中的层

让我们以卷积神经网络为例,一个可以用于图像分类的人工神经网络。如果我们想让神经网络区分猫和狗,它会经历这些主要步骤。

输入层

当机器拥有像人类一样的大脑,会怎么样?

高亮的是进入第一个隐藏层的输入节点  

每个节点表示通过模型的样本数据集中的单个特征或变量。这一层的节点连接着下一层(即隐藏层)的所有节点。连接有从0到1的权重,表示连接的强度。我们的狗对猫输入层中的一些节点可能是变量,如耳朵大小、皮毛颜色或尾巴长度。

隐藏层

当机器拥有像人类一样的大脑,会怎么样?

隐藏层是输入和输出之间的任何层。本质上,它们为指向同一个节点的连接计算加权和。这个总和通过一个激活函数传递(我们将在下面更详细地讨论),该激活函数是基于大脑以及不同的刺激如何激活不同的神经元。激活函数的结果被传递到下一层的下一个节点上,并不断重复,直到输出层。

输出层

当机器拥有像人类一样的大脑,会怎么样?

权重在上述过程中不断变化,直到被完美优化(下面也有更多关于此的内容)。输出层中产生的神经元表示潜在输出的值。在上述示例神经网络中,输出层中的两个节点是网络认为它是什么的概率,例如,75%可能是狗 vs . 25%可能是猫。

    训练一个神经网络

当机器拥有像人类一样的大脑,会怎么样?

训练人工神经网络基本等同于解决一个优化问题。在这里,它试图优化神经元之间的连接权重。在训练过程中,给定的权重值不断更新,以达到最优值。优化依赖于一种优化算法,其中最常用的是随机梯度下降(一种减少损失的算法)。

基本上,这个问题的目标是最小化损失函数。损失函数测量结果的准确性。例如,在训练一个对猫和狗进行分类的神经网络时,会提供标记数据。比如输入了一个狗的图像,网络输出的概率是77%可能狗 vs. 23%可能猫。我们的目标是让狗的可能性为100%(以确保它是一个狗),并最小化可能出现的错误。

    它是如何学习的?

一次数据传递称为一个迭代次数。为了学习,神经网络通过多次迭代传递数据,从而使最初给定的随机权重得以发展。为了改进,以给定的输出和梯度(函数d(loss)/d(weight)的导数)乘以学习率(一个介于0.01和0.001之间的数字)来计算损失。

梯度的值与学习率相乘后会变小。旧的权重会被替换为更新后的值。

要牢记每个权重都有一个不同的损失函数梯度值,因此梯度是根据每个权重单独计算的。随着迭代次数的增加,权值不断更新,越来越接近优化值,损失最小化。这种权重的更新本质上学习,因为分配到每个权重的值基于损失函数的影响。

    要点

  • 深度学习是机器学习的一个分支,其灵感来源于我们大脑中的神经网络  

  • 在人工神经网络中有三种主要的层次类型(输入、隐藏和输出)

  • 要训练一个人工神经网络,必须更新值以最小化损失函数(输出中有多少错误)  

  • 神经网络通过多次数据传递进行学习,并迭代权值直到得到优化值

感谢你的阅读!如果你喜欢这篇文章,请留下一些掌声,关注我的媒体,以及时获知我在AI方面的进展。

想要继续查看该篇文章相关链接和参考文献?

长按链接点击打开或点击【 当机器拥有像人类一样的大脑,会怎么样? 】:

https://ai.yanxishe.com/page/TextTranslation/1319

AI研习社每日更新精彩内容,观看更多精彩内容: 雷锋网雷锋网雷锋网 (公众号:雷锋网)

五个很厉害的 CNN 架构

2018.12十大机器学习热门网文

深度网络揭秘之深度网络背后的数学

如何将深度学习应用于无人机图像的目标检测

等你来译:

对混乱的数据进行聚类 

图片语义分割深度学习算法要点回顾 

计算机视觉/感知:运动恢复结构 

一文带你读懂 WaveNet:谷歌助手的声音合成器 


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Linux程序设计

Linux程序设计

马修 / 陈健 / 人民邮电出版社 / 2007-7 / 89.00元

《Linux 程序设计(第3版)》讲述在Linux系统及其他UNIX风格的操作系统上进行的程序开发,主要内容包括标准Linux C语言函数库和由不同的Linux或UNIX标准指定的各种工具的使用方法,大多数标准Linux开发工具的使用方法,通过DBM和MySQL数据库系统对Linux中的数据进行存储,为X视窗系统建立图形化用户界面等。《Linux 程序设计(第3版)》通过先介绍程序设计理论,再以适......一起来看看 《Linux程序设计》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

SHA 加密
SHA 加密

SHA 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具