内容简介:5214
import numpy as np from pandas import Series,DataFrame import pandas as pd # 使用pandas的cut函数划分年龄组 ages = [20,22,25,27,21,23,37,31,61,45,32] bins = [18,25,35,60,100] cats = pd.cut(ages,bins) print(cats) [(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (35, 60], (25, 35], (60, 100], (35, 60], (25, 35]] Length: 11 Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]] cats.codes array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 1], dtype=int8) pd.value_counts(cats) (18, 25] 5 (25, 35] 3 (35, 60] 2 (60, 100] 1 dtype: int64 pd.cut(ages,bins,right=False) [[18, 25), [18, 25), [25, 35), [25, 35), [18, 25), ..., [35, 60), [25, 35), [60, 100), [35, 60), [25, 35)] Length: 11 Categories (4, interval[int64]): [[18, 25) < [25, 35) < [35, 60) < [60, 100)] group_names = ['Youth','YoungAdult','MiddleAged','Senior'] pd.cut(ages,bins,labels=group_names) [Youth, Youth, Youth, YoungAdult, Youth, ..., MiddleAged, YoungAdult, Senior, MiddleAged, YoungAdult] Length: 11 Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]
http://www.waitingfy.com/archives/5214
Post Views: 0
5214
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Java5.0Tiger程序高手秘笈
BrettMclaughlin / 东南大学出版社 / 2005-10 / 28.00元
代号为 “Tiger”的下一个 Java 版本,不只是个小改动版。在语言核心中有超过 100 项以上的变动,同时有大量的对 library 与 API 所做的加强,让开发者取得许多新的功能、工具与技术。但在如此多的变化下,应该从何处开始着手?也许可以从既长又无趣的语言规范说明书开始看起;或等待最少 500 页的概念与理论巨著出版;甚至还可以直接把玩新的 JDK 看看能够有什么发现;或者借由《Jav......一起来看看 《Java5.0Tiger程序高手秘笈》 这本书的介绍吧!