内容简介:版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何技术交流,可随时联系。Hadoop本身也提供了几个解决方案,分别为:Hadoop Archive,Sequence file和CombineFileInputFormat。我们基于Hadoop内置的CombineFileInputFormat来实现处理海量小文件,需要做的工作就很
版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何技术交流,可随时联系。
1 问题陈述
- 小文件是指文件size小于HDFS上block大小的文件。这样的文件会给hadoop的扩展性和性能带来严重问题。首先,在HDFS中,任何block,文件或者目录在内存中均以对象的形式存储,每个对象约占150byte,如果有10000000个小文件,每个文件占用一个block,则namenode大约需要2G空间。如果存储1亿个文件,则namenode需要20G空间。namenode内存容量严重制约了集群的扩展。
- 访问大量小文件速度远远小于访问几个大文件。HDFS最初是为流式访问大文件开发的,如果访问大量小文件,需要不断的从一个datanode跳到另一个datanode,严重影响性能。最后,处理大量小文件速度远远小于处理同等大小的大文件的速度。每一个小文件要占用一个slot,而task启动将耗费大量时间甚至大部分时间都耗费在启动task和释放task上。
2 解决方案
Hadoop本身也提供了几个解决方案,分别为:Hadoop Archive,Sequence file和CombineFileInputFormat。
2.1 Hadoop Archive
-
Hadoop Archive或者HAR,是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样在减少namenode内存使用的同时,仍然允许对文件进行透明的访问。
(1) 对某个目录/foo/bar下的所有小文件存档成/outputdir/ zoo.har: hadoop archive -archiveName zoo.har -p /foo/bar /outputdir 当然,也可以指定HAR的大小(使用-Dhar.block.size)。 (2) HAR的访问路径可以是以下两种格式: har://scheme-hostname:port/archivepath/fileinarchive har:///archivepath/fileinarchive(本节点) 可以这样查看HAR文件存档中的文件: hadoop dfs -ls har:///user/zoo/foo.har 输出: har:///user/zoo/foo.har/hadoop/dir1 har:///user/zoo/foo.har/hadoop/dir2 复制代码 -
使用HAR时需要两点,第一,对小文件进行存档后,原文件并不会自动被删除,需要用户自己删除;第二,创建HAR文件的过程实际上是在运行一个mapreduce作业,因而需要有一个hadoop集群运行此命令。
-
此外,HAR还有一些缺陷:第一,一旦创建,Archives便不可改变。要增加或移除里面的文件,必须重新创建归档文件。第二,要归档的文件名中不能有空格,否则会抛出异常,可以将空格用其他符号替换(使用-Dhar.space.replacement.enable=true 和-Dhar.space.replacement参数)。
2.2 SequenceFile
-
sequenceFile文件是Hadoop用来存储二进制形式的[Key,Value]对而设计的一种平面文件(Flat File)。可以把SequenceFile当做是一个容器,把所有的文件打包到SequenceFile类中可以高效的对小文件进行存储和处理。
-
SequenceFile文件并不按照其存储的Key进行 排序 存储,SequenceFile的内部类Writer提供了append功能。SequenceFile中的Key和Value可以是任意类型Writable或者是自定义Writable。
-
在存储结构上,SequenceFile主要由一个Header后跟多条Record组成,Header主要包含了Key classname,value classname,存储压缩算法,用户自定义元数据等信息,此外,还包含了一些同步标识,用于快速定位到记录的边界。每条Record以键值对的方式进行存储,用来表示它的字符数组可以一次解析成:记录的长度、Key的长度、Key值和value值,并且Value值的结构取决于该记录是否被压缩。
https://blog.csdn.net/bitcarmanlee/article/details/78111289 复制代码
2.3 CombineFileInputFormat
我们基于Hadoop内置的CombineFileInputFormat来实现处理海量小文件,需要做的工作就很显然了,如下所示:
-
实现一个RecordReader来读取CombineFileSplit包装的文件Block
-
继承自CombineFileInputFormat实现一个使用我们自定义的RecordReader的输入规格说明类
-
处理数据的Mapper实现类
-
配置用来处理海量小文件的MapReduce Job
https://blog.csdn.net/flyfish778/article/details/47722551 复制代码
3 Hive的小文件处理
- 配置Map输入合并
- 配置Hive输出结果合并
- 在Hive中进行归档处理 Hive支持将已存的分区转换为HAR,从而使得分区下的文件数目大大减少。但是从HAR读数据需要额外的开销,因此查询归档下数据可能会变慢。
如果不是分区表,可以创建成外部表,使用har://协议来指定路径。
- SequenceFile
- 控制reducer个数 Reducer的数量决定了结果文件的数量。所以在合适的情况下控制reducer的数量,可以实现减少小文件数量。
引用: http://www.raincent.com/content-85-11297-1.html 复制代码
4 总结
因为工作中用到这个,总结成文,参考多维博客,均表明引用连接,内容粗鄙,勿怪!
秦凯新 于深圳
版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何技术交流,可随时联系。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Python数据处理(二):处理 Excel 数据
- 自然语言处理之数据预处理
- Python数据处理(一):处理 JSON、XML、CSV 三种格式数据
- ignite系列数据处理
- R|数据处理|因子型数据
- Python数据处理笔记(1)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
计算机程序设计艺术(第3卷)
Donald E.Knuth / 苏运霖 / 国防工业出版社 / 2002-9 / 98.00元
第3卷的头一次修订对经典计算机排序和查找技术做了最全面的考察。它扩充了第1卷对数据结构的处理,以将大小数据库和内外存储器一并考虑;遴选了精心核验的计算机方法,并对其效率做了定量分析。第3卷的突出特点是对“最优排序”一节的修订和对排列论与通用散列法的讨论。一起来看看 《计算机程序设计艺术(第3卷)》 这本书的介绍吧!