咱们开门见山,直接先说应该明确的结论,相信大家在经过整一年多的宣传、使用、体验分享等内容的狂轰滥炸之后,大部分的用户其实都是知道普通的面部识别并不等于Face ID,当然,这里Face ID泛指真正使用3D人脸建模来完成识别、比对过程的解锁技术。
通过对比我们可以看到3D方案和2D方案之间的差距是巨大的,厂商们之所以能在低端机上普及2D的人脸识别,主要就是因为已经有大量整合型的硬件及技术方案可供选择,成本足够低廉,给用户添加这样一项便于宣传的新特性绝对是利于宣传的。
从用户的角度来说,添加前置摄像头简单的2D人脸识别算是无可厚非,确实有用户喜欢其带来的便捷解锁体验,不过如果在宣传上妄图把二者混为一谈,那固然能骗到一些不太关注数码方面信息的用户,但只有让用户真正了解面部识别和Face ID的区别,他们才能结合自身条件判断是否需要使用相关功能,浑水摸鱼,绝对是漠视用户信息安全性的表现。
以上所述就是小编给大家介绍的《面部识别=Face ID?别被骗了!这可还真不一样》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 面部识别软件有助于识别美国内战士兵
- flutter mlkit面部识别资源
- “面部识别”虽火爆,实际落地还尚早
- 这位科学家研发鸟类面部识别技术
- 人脸识别技术禁令再来,美国又一城市禁止面部识别软件
- 面部识别技术来了 将覆盖97%美国离境乘客
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
大数据系统构建
Nathan Marz、James Warren / 马延辉、向磊、魏东琦 / 机械工业出版社 / 2017-1 / 79.00
随着社交网络、网络分析和智能型电子商务的兴起,传统的数据库系统显然已无法满足海量数据的管理需求。 作为一种新的处理模式,大数据系统应运而生,它使用多台机器并行工作,能够对海量数据进行存储、处理、分析,进而帮助用户从中提取对优化流程、实现高增长率的有用信息,做更为精准有效的决策。 但不可忽略的是,它也引入了大多数开发者并不熟悉的、困扰传统架构的复杂性问题。 本书将教你充分利用集群硬件优势的La......一起来看看 《大数据系统构建》 这本书的介绍吧!