HashMap底层实现原理

栏目: 数据库 · 发布时间: 7年前

内容简介:HashMap实现了Map接口,我们常用HashMap进行put和get操作读存键值对数据。下面介绍基于jdk1.8深入了解HashMap底层原理。HashMap实际是一种“数组+链表”数据结构。在put操作中,通过内部定义算法寻止找到数组下标,将数据直接放入此数组元素中,若通过算法得到的该数组元素已经有了元素(俗称hash冲突,链表结构出现的实际意义也就是为了解决hash冲突的问题)。将会把这个数组元素上的链表进行遍历,将新的数据放到链表末尾。

HashMap概述

HashMap实现了Map接口,我们常用HashMap进行put和get操作读存键值对数据。下面介绍基于jdk1.8深入了解HashMap底层原理。

HashMap数据结构

HashMap实际是一种“数组+链表”数据结构。在put操作中,通过内部定义算法寻止找到数组下标,将数据直接放入此数组元素中,若通过算法得到的该数组元素已经有了元素(俗称hash冲突,链表结构出现的实际意义也就是为了解决hash冲突的问题)。将会把这个数组元素上的链表进行遍历,将新的数据放到链表末尾。

HashMap底层实现原理

存储数据的对象

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;        
}复制代码

我们从jdk1.8源代码看出存储对象Node实际是实现Map.Entry对象接口。

hash:通过hash算法的出来的值。hash值的算法我们看下HashMap源代码的实现

static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 }复制代码

不同的数据类型的hashCode计算的方法不一样,我们看下String和Integer两种数据类型的hashCode算法

String.hashCode()

public int hashCode() {
        int h = hash;
        if (h == 0 && value.length > 0) {
            char val[] = value;

            for (int i = 0; i < value.length; i++) {
                h = 31 * h + val[i];
            }
            hash = h;
        }
        return h;
    }复制代码

通过将字符串转换成char数组,使用公式s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]进行计算得出最后的值。val[i]值是对应字符的ASCII值.在看到这里的时候,这里为什么使用了一个31作为相乘因子(能为啥,还不是为了性能考虑,那为什么使用31性能能得到优化呢),这里可以延伸讨论。

Integer.hashCode()

public static int hashCode(int value) {
        return value;
    }复制代码

直接返回值.

key:存储数据的key

value:存储数据的value

next:下一个数据,出现哈希冲突时,该数组元素会出现链表结构,会使用next指向链表中下一个元素对象

链表结构导致的问题

通过哈希算法从寻止上能够高效的找到对应的下标,但是随着数据的增长,哈希冲突碰撞过多。在寻找数据上,找到该来链表,会通过遍历在寻找对应数据,如此将会使得get数据效率越来越低。在jdk1.8中,链表元素数量大于等于8将会重组该链表结构形成为“红黑树结构”,这种结构使得在hash冲突碰撞过多情况下,get效率比链表的效率高很多。

HashMap put存储数据是如何处理的

HashMap有几个重要的变量

transient Node<K,V>[] table;
int threshold;
final float loadFactor;
int modCount;  
int size;复制代码

table:存储数组的变量,初始长度为16通过源代码看出在第一次进行resize扩容(java是静态语言,在定义数组初始化时,需要定义数组的长度,在map数据增长后,内部机制会进行重新定义一个数组做到扩容的操作)初始化时,会将默认静态变量

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;复制代码

赋给数组长度进行初始化。

loadFactor:数据的增长因子,默认为0.75。在进行扩容操作会使用到。

threshold:允许的最大的存储的元素数量,通过length数组长度*loadFactor增长因子得出

modCount:记录内部结构发生变化的次数,put操作(覆盖值不计算)以及其他...

size:实际存储的元素数量

put的流程

直接通过源代码分析

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 判断数组是否为空,长度是否为0,是则进行扩容数组初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 通过hash算法找到数组下标得到数组元素,为空则新建
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
             // 找到数组元素,hash相等同时key相等,则直接覆盖
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 该数组元素在链表长度>8后形成红黑树结构的对象
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                // 该数组元素hash相等,key不等,同时链表长度<8.进行遍历寻找元素,有就覆盖无则新建
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        // 新建链表中数据元素
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            // 链表长度>=8 结构转为 红黑树
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }复制代码

便于理解,花了一下图。如下图示(画工不是很好,见谅见谅)

HashMap底层实现原理

下图是一位大神级别画的图,引用一下便于理解

HashMap底层实现原理

1、首选判断table是否为空,数组长度为空,将会进行第一次初始化。(在实例化HashMap是,并不会进行初始化数组)

2、进行第一次resize()扩容之后。开始通过hash算法寻址找到数组下标。若数组元素为空,则创建新的数组元素。若数组元素不为空,同时hash相等,key不相等,同时不是TreeNode数据对象,将遍历该数组元素下的链表元素。若找到对应的元素,则覆盖,如果没有找到,就新建元素,放入上一个链表元素的next中,在放入元素之后,如果条件满足"链表元素长度>8",则将该链表结构转为"红黑树结构"。

3、找到对应的数组元素或者链表元素,同时创建新的数据元素或者覆盖元素之后。如果条件满足元素大小size>允许的最大元素数量threshold,则再一次进行扩容操作。每次扩容操作,新的数组大小将是原始的数组长度的两倍。

4、put操作完成。

调用put方法示例

下面通过使用例子介绍这个过程

HashMap<Integer, String> hashMap = new HashMap<Integer, String>(4, 0.75f);// 1
int a1 = 1;
int a2 = 2;
int a3 = 5;
System.out.println(String.valueOf(a1&3) + " " + String.valueOf(a2&3)+ " " + String.valueOf(a3&3));// 1 2 1 数组下标
hashMap.put(a1, "1");// 2
hashMap.put(a2, "2");// 3
hashMap.put(a3, "5");// 4复制代码

1、创建了一个HashMap对象,初始化initialCapacity为4,增长因子为0.75。threshold初始化为4

2、进行了第一次put,因为table为空,进行了第一次resize()扩容操作,数组进行初始化,默认为16. threshold变为3。同时通过hash算法(数组长度n-1 & hash)即为1。

3、第二次put操作,同时获取数组下标为2,此时数组下标为2当前没有数组元素,则直接创建数据元素放入

4、第三次put操作,得到数组下标为1已经有了一个数组元素。同时我们知道存储数据的Node对象中又一个next,则新的此时的数据元素放入上一个链表中next为空的Node中的next中。

形成了如下图的数据结构

HashMap底层实现原理

结论:通过hash算法进行计算的出来的数组下标,有一定概率会导致hash冲突,那在一个数组元素中,存在hash值一样的key,key却不相等。为了解决这一个hash冲突问题,使用了链表结构进行处理。

HashMap扩容resize()

java是静态方法,在数组进行初始化时,必须给一个数组长度。HashMap定义默认的数组长度为16。条件满足元素size>允许的最大元素数量threshold。则进行扩容。一般来说,在put操作中,HashMap至少进行了一次扩容(第一次为初始化)。

我们在原有的示例加入如下

int a4 = 6;
hashMap.put(a4, "6");复制代码

形成了新的结构,如下图

HashMap底层实现原理

放入了2:2的next中,此时size=4,threshold>3,条件满足size>threshold,进行扩容resize()操作

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            // 超过最大限制,不进行扩容
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 进行原始长度*2扩容
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        // 第一次初始化
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 第一次初始化
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        // 新的最大允许元素数量值
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        // 新的数组     
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            // 遍历老数组
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 直接按照原始索引放入新数组中
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        // 遍历链表
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            // 放入原索引
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
               // 原索引+oldCap
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }复制代码

在put6:6之后,直接就执行了扩容,新数组长度为8,新的结构如下

HashMap底层实现原理

在新的结构中,将原始的数组下标为1和2链表元素均匀分布新数组的其他数组元素中。此间扩容的变化的过程如下

老数组长度为4,通过算法得出数据的下标1:1为1,5:5为1,2:2和6:6为2

1(1:1 == > 5:5)

2(2:2 == > 6:6)复制代码

在进行扩容操作是,数组元素链表中的第一个数组下标不会产生变化,在遍历链表其他元素中通过算法"e.hash & oldCap"!=0则将链表元素放入新数据数组下标为[原始数据下标+原始数据长度]

再次引用大神的图,便于理解扩容的数据移动变化

HashMap底层实现原理

在扩容操作中,因无需重新计算hash值,同时均匀将链表冲突的元素均匀分布到新的数组中。这设计实在是巧妙。

get寻找数据

final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }复制代码

get方法比较简单,基本流程为通过key的hashCode和寻址算法得到数组下标,若数组元素中的key和hash相等,则直接返回。若不想等,同时存在链表元素,则遍历链表元素进行匹配。由于1.8引用了红黑树结构,在链表元素过多时,1.8的实现将比1.7在get和put操作上效率高上很多。

在本文中,未详细说明,寻址的算法的优越性和红黑树的优点。这里不进行讨论。

下节,研究和证明HashMap为何是线程非安全的

【我是码农,也不是码农】软件 – 注重思想与逻辑


以上所述就是小编给大家介绍的《HashMap底层实现原理》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Art and Science of CSS

The Art and Science of CSS

Jonathan Snooks、Steve Smith、Jina Bolton、Cameron Adams、David Johnson / SitePoint / March 9, 2007 / $39.95

Want to take your CSS designs to the next level? will show you how to create dozens of CSS-based Website components. You'll discover how to: # Format calendars, menus and table of contents usin......一起来看看 《The Art and Science of CSS》 这本书的介绍吧!

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具