从动力学角度看优化算法(二):自适应学习率算法

栏目: 编程工具 · 发布时间: 6年前

内容简介:在在这篇文章中,我们继续沿着这个思路,去理解优化算法中的自适应学习率算法。首先,我们看一个非常经典的自适应学习率优化算法:RMSprop。RMSprop虽然不是最早提出的自适应学习率的优化算法,但是它却是相当实用的一种,它是诸如Adam这样的更综合的算法的基石,通过它我们可以观察自适应学习率的优化算法是怎么做的。

《从动力学角度看优化算法(一):从SGD到动量加速》 一文中,我们提出SGD优化算法跟常微分方程(ODE)的数值解法其实是对应的,由此还可以很自然地分析SGD算法的收敛性质、动量加速的原理等等内容。

在这篇文章中,我们继续沿着这个思路,去理解优化算法中的自适应学习率算法。

首先,我们看一个非常经典的自适应学习率优化算法:RMSprop。RMSprop虽然不是最早提出的自适应学习率的优化算法,但是它却是相当实用的一种,它是诸如Adam这样的更综合的算法的基石,通过它我们可以观察自适应学习率的优化算法是怎么做的。

一般的梯度下降是这样的:

$$\begin{equation}\boldsymbol{\theta}_{n+1}=\boldsymbol{\theta}_{n} - \gamma \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\end{equation}$$

很明显,这里的$\gamma$是一个超参数,便是学习率,它可能需要在不同阶段做不同的调整。

而RMSprop则是

$$\begin{equation}\begin{aligned}\boldsymbol{g}_{n+1} =& \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\\

\boldsymbol{G}_{n+1}=&\lambda \boldsymbol{G}_{n} + (1 - \lambda) \boldsymbol{g}_{n+1}\otimes \boldsymbol{g}_{n+1}\\

\boldsymbol{\theta}_{n+1}=&\boldsymbol{\theta}_{n} - \frac{\tilde{\gamma}}{\sqrt{\boldsymbol{G}_{n+1} + \epsilon}}\otimes \boldsymbol{g}_{n+1}

\end{aligned}\end{equation}$$

对比朴素的SGD,可以发现RMSprop在对$\boldsymbol{\theta}$的更新中,将原来是标量的学习率$\gamma$,换成了一个向量

$$\begin{equation}\boldsymbol{\gamma}=\frac{\tilde{\gamma}}{\sqrt{\boldsymbol{G}_{n+1} + \epsilon}}\end{equation}$$

如果把这个向量也看成是学习率,那么RMSprop就是找到了一个方案,能够给参数的每个分量分配不同的学习率。

这个学习率的调节,是通过因子$\frac{1}{\sqrt{\boldsymbol{G}_{n+1} + \epsilon}}$来实现的,而$\boldsymbol{G}_{n+1}$则是梯度平方的滑动平均。本质上来说,“滑动平均”平均只是让训练过程更加平稳一些,它不是起到调节作用的原因,起作用的主要部分是“梯度”,也就是说,可以用梯度大小来调节学习率。

为什么用梯度大小可以来调节学习率呢?其实这个思想非常朴素~

回顾:极小值点和ODE

话不多说,简单起见,我们先从一个一维例子出发:假设我们要求$L(\theta)$的一个极小值点,那么我们引入一个虚拟的时间参数$t$,转化为ODE

$$\begin{equation}\frac{d\theta}{dt}=\dot{\theta} = - L'(\theta)\end{equation}$$

不难判断,$L(\theta)$的一个极小值点就是这个方程的稳定的不动点,我们从任意的$\theta_0$出发,数值求解这个ODE,可以期望它最终会收敛于这个不动点,从而也就得到了一个极小值点。

最简单的欧拉解法,就是用$\frac{\theta_{t+\gamma}-\theta_t}{\gamma}$去近似$\dot{\theta}$,从而得到

$$\begin{equation}\frac{\theta_{t+\gamma}-\theta_t}{\gamma} = - L'(\theta_t)\end{equation}$$

也就是

$$\begin{equation}\theta_{t+\gamma} = \theta_t - \gamma L'(\theta_t)\end{equation}$$

这就是梯度下降法了,$\theta_{t+\gamma}$相当于$\theta_{n+1}$,而$\theta_t$相当于$\theta_n$,也就是每步前进$\gamma$那么多。

问题是,$\gamma$选多少为好呢?当然,从“用$\frac{\theta_{t+\gamma}-\theta_t}{\gamma}$去近似$\dot{\theta}$”这个角度来看,当然是$\gamma$越小越精确,但是$\gamma$越小,需要的迭代次数就越多,也就是说计算量就越大,所以越小越好是很理想,但是不现实。

所以,最恰当的方案是:每一步够用就好。可是我们怎么知道够用了没有?

因为我们是用$\frac{\theta_{t+\gamma}-\theta_t}{\gamma}$去近似$\dot{\theta}$的,那么就必须分析近似程度:根据泰勒级数,我们有

$$\begin{equation}\theta_{t+\gamma} = \theta_t + \gamma \dot{\theta}_n + \mathscr{O}(\gamma^2)\end{equation}$$

在我们这里有$\dot{\theta} = - L'(\theta)$,那么我们有

$$\begin{equation}\theta_{t+\gamma} = \theta_t - \gamma L'(\theta_t) + \mathscr{O}(\gamma^2)\end{equation}$$

可以期望,当$\gamma$比较小的时候,误差项$\mathscr{O}(\gamma^2)<\gamma \left|L'(\theta_t)\right|$,也就是说,在一定条件下,$\gamma \left|L'(\theta_t)\right|$本身就是误差项的度量,如果我们将$\gamma \left|L'(\theta_t)\right|$控制在一定的范围内,那么误差也被控制住了。即

$$\begin{equation}\gamma \left|L'(\theta_t)\right|\leq \tilde{\gamma}\end{equation}$$

其中$\tilde{\gamma}$是一个常数,甚至只需要简单地$\gamma \left|L'(\theta_t)\right|=\tilde{\gamma}$(暂时忽略$L'(\theta_t)=0$的可能性,先观察整体的核心思想),也就是

$$\begin{equation}\gamma = \frac{\tilde{\gamma}}{\left|L'(\theta_t)\right|}\end{equation}$$

这样我们就通过梯度来调节了学习率。

读者可能会诟病,把$\gamma = \tilde{\gamma} / \left|L'(\theta_t)\right|$代入原来的迭代结果,不就是:

$$\begin{equation}\theta_{t+\tilde{\gamma} / \left|L'(\theta_t)\right|} = \theta_t - \tilde{\gamma}\cdot\text{sign}\big[L'(\theta_t)\big]\end{equation}$$

整个梯度你只用了它的符号信息,这是不是太浪费了?(过于平凡:也就是不管梯度大小如何,每次迭代$\theta$都只是移动固定的长度。)

注意,从解ODE的角度看,其实这并没有毛病,因为ODE的解是一条轨迹$(t,\theta(t))$,上面这样处理,虽然$\theta$变得平凡了,但是$t$却变得不平凡了,也就是相当于$t,\theta$的地位交换了,因此还是合理的。只不过,如果关心的是优化问题,也就是求$L(\theta)$的极小值点的话,那么上式确实有点平凡了,因为如果每次迭代$\theta$都只是移动固定的长度,那就有点像网格搜索了,太低效。

所以,为了改善这种不平凡的情况,又为了保留用梯度调节学习率的特征,我们可以把梯度平均一下,结果就是

$$\begin{equation}\begin{aligned}G_{t+\tilde{\gamma}}=&\lambda G_{t} + (1 - \lambda) |L'(\theta_t)|^2\\

\gamma =& \frac{\tilde{\gamma}}{\sqrt{G_{t+\tilde{\gamma}} + \epsilon}}\\

\theta_{t+\gamma} =& \theta_t - \gamma L'(\theta_t)

\end{aligned}\end{equation}$$

这个$\lambda$是一个接近于1但是小于1的常数,这样的话$G_t$在一定范围内就比较稳定,同时在一定程度上保留了梯度$L'(\theta_t)$本身的特性,所以用它来调节学习率算是一个比较“机智”的做法。为了避免$t+\tilde{\gamma},t+\gamma$引起记号上的不适应,统一用$n,n+1$来表示下标,得到:

$$\begin{equation}\begin{aligned}G_{n+1}=&\lambda G_{n} + (1 - \lambda) |L'(\theta_n)|^2\\

\gamma =& \frac{\tilde{\gamma}}{\sqrt{G_{n+1} + \epsilon}}\\

\theta_{n+1} =& \theta_n - \gamma L'(\theta_n)

\end{aligned}\end{equation}\label{eq:rmsprop-1}$$

这就是开头说的RMSprop算法了。

上面的讨论都是一维的情况,如果是多维情况,那怎么推广呢?

也许读者觉得很简单:把标量换成向量不就行了么?并没有这么简单,因为$\eqref{eq:rmsprop-1}$推广到高维,至少有两种合理的选择:

$$\begin{equation}\begin{aligned}G_{n+1}=&\lambda G_{n} + (1 - \lambda) \Vert \nabla_{\boldsymbol{\theta}}L(\boldsymbol{\theta}_n)\Vert^2\\

\gamma =& \frac{\tilde{\gamma}}{\sqrt{G_{n+1} + \epsilon}}\\

\boldsymbol{\theta}_{n+1} =& \boldsymbol{\theta}_n - \gamma \nabla_{\boldsymbol{\theta}}L(\boldsymbol{\theta}_n)

\end{aligned}\end{equation}$$

$$\begin{equation}\begin{aligned}\boldsymbol{G}_{n+1}=&\lambda \boldsymbol{G}_{n} + (1 - \lambda)\big(\nabla_{\boldsymbol{\theta}}L(\boldsymbol{\theta}_n)\otimes \nabla_{\boldsymbol{\theta}}L(\boldsymbol{\theta}_n)\big)\\

\boldsymbol{\gamma} =& \frac{\tilde{\gamma}}{\sqrt{\boldsymbol{G}_{n+1} + \epsilon}}\\

\boldsymbol{\theta}_{n+1} =& \boldsymbol{\theta}_n - \boldsymbol{\gamma}\otimes \nabla_{\boldsymbol{\theta}}L(\boldsymbol{\theta}_n)

\end{aligned}\end{equation}\label{eq:rmsprop-n}$$

前者用梯度的总模长来累积,最终保持了学习率的标量性;后者将梯度的每个分量分别累积,这种情况下调节后的学习率就变成了一个向量,相当于给每个参数都分配不同的学习率。要是从严格理论分析的角度来,其实第一种做法更加严密,但是从实验效果来看,却是第二种更为有效。

我们平时所说的RMSprop算法,都是指后者$\eqref{eq:rmsprop-n}$。但是有很多喜欢纯SGD炼丹的朋友会诟病这种向量化的学习率实际上改变了梯度的方向,导致梯度不准,最终效果不够好。所以不喜欢向量化学习率的读者,不妨试验一下前者。

本文再次从ODE的角度分析了优化算法,这次是从误差控制的角度给出了一种自适应学习率算法(RMSprop)的理解。至于我们更常用的Adam,则是RMSprop与动量加速的结合,这里就不赘述了。

将优化问题视为一个常微分方程的求解问题,这其实就是将优化问题变成了一个动力学问题,这样可以让我们从比较物理的视角去理解优化算法(哪怕只是直观而不严密的理解),甚至可以把一些ODE的理论结果拿过来用,后面笔者会试图再举一些这样的例子。

转载到请包括本文地址: https://kexue.fm/archives/6234

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎/本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (2018, Dec 20). 《从动力学角度看优化算法(二):自适应学习率算法 》[Blog post]. Retrieved from https://kexue.fm/archives/6234


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

世界是数字的

世界是数字的

[美] Brian W. Kernighan / 李松峰、徐建刚 / 人民邮电出版社 / 2013-6 / 49.00

家用电器、汽车、飞机、相机、手机、GPS 导航仪,还有游戏机,虽然你看不见,但这些设备都有计算能力。手机通信网络、有线电视网络、空中交通管制系统、电力系统、银行和金融服务系统等基础设施背后无一不是计算机在支撑。如今的世界是数字的,而计算机和计算无处不在。这本书就是要告诉大家数字世界有关计算机的一切。本书没有高深莫测的专业术语,但它全面解释了当今计算和通信领域的工作方式,包括硬件、软件、互联网、通信......一起来看看 《世界是数字的》 这本书的介绍吧!

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具