看动画轻松理解「 堆 」

栏目: 编程工具 · 发布时间: 6年前

内容简介:堆(heap)又被为优先队列(priority queue)。尽管名为优先队列,但堆并不是队列。因为队列中允许的操作是先进先出(FIFO),在队尾插入元素,在队头取出元素。而堆虽然在堆底插入元素,在堆顶取出元素,但是堆中元素的排列不是按照到来的先后顺序,而是按照一定的优先顺序排列的。

堆(heap)又被为优先队列(priority queue)。尽管名为优先队列,但堆并不是队列。

因为队列中允许的操作是先进先出(FIFO),在队尾插入元素,在队头取出元素。

而堆虽然在堆底插入元素,在堆顶取出元素,但是堆中元素的排列不是按照到来的先后顺序,而是按照一定的优先顺序排列的。

本文通过堆的实现、最小堆(最大堆)、堆的时间复杂度、优先队列的实现、堆 排序 来介绍「 堆 」。

堆的实现

堆的一个经典的实现是完全二叉树(complete binary tree),这样实现的堆称为二叉堆(binary heap)。

这里来说明一下满二叉树的概念与完全二叉树的概念。

满二叉树:除了叶子节点,所有的节点的左右孩子都不为空,就是一棵满二叉树,如下图。

看动画轻松理解「 堆 」

可以看出:满二叉树所有的节点都拥有左孩子,又拥有右孩子。

完全二叉树:不一定是一个满二叉树,但它不满的那部分一定在右下侧,如下图

看动画轻松理解「 堆 」

堆的特性:

  • 必须是完全二叉树
  • 任一结点的值是其子树所有结点的最大值或最小值
  • 最大值时,称为“最大堆”,也称大顶堆;
  • 最小值时,称为“最小堆”,也称小顶堆。
看动画轻松理解「 堆 」

堆的基础实现

只要谨记堆的定义特性,实现起来其实是很容易的。

  • 特性1. 维持完全二叉树
  • 特性2. 子类数字总是大于父类数字
public class MinHeap <E extends Comparable<E>> {
    private Array<E> data;

    public MinHeap(int capacity){
        data = new Array<>(capacity);
    }

    public MinHeap(){
        data = new Array<>();
    }

    // 返回堆中的元素个数
    public int size(){
        return data.getSize();
    }

    // 返回一个布尔值, 表示堆中是否为空
    public boolean isEmpty(){
        return data.isEmpty();
    }

    // 返回完全二叉树的数组表示中,一个索引所表示的元素的父亲节点的索引
    private int parent(int index){
        return (index - 1) / 2;
    }

    // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
    private int leftChild(int index){
        return index * 2 + 1;
    }

    // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
    private int rightChild(int index){
        return index * 2 + 2;
    }
}

复制代码

最小堆的插入(ADD)

看动画轻松理解「 堆 」

假设现有元素 5 需要插入,为了维持 完全二叉树 的特性,新插入的元素一定是放在结点 6 的右子树;同时为了 满足任一结点的值要小于左右子树的值 这一特性,新插入的元素要和其父结点作比较,如果比父结点小,就要把父结点拉下来顶替当前结点的位置,自己则依次不断向上寻找,找到比自己大的父结点就拉下来,直到没有符合条件的值为止。

动画讲解:

  1. 在这里先将元素 5 插入到末尾,即放在结点 6 的右子树。
  1. 然后与父类比较, 6 > 5 ,父类数字大于子类数字,子类与父类交换。

  2. 重复此操作,直到不发生替换。

Show me the code:

添加一个辅助函数,用来交换传入的索引两个位置的元素值

/**
     * 交换传入的索引两个位置的元素值
     *
     * @param i
     * @param j
     */
    public void swap(int i, int j) {
        if (i < 0 || i >= size || j < 0 || j >= size)
            throw new IllegalArgumentException("Index is illegal.");

        E temp = data[i];
        data[i] = data[j];
        data[j] = temp;
    }

复制代码

数组中添加交换两元素位置的方法, 注意下面代码中注释的描述特性位置。

/**
     * 堆中添加元素方法。
     *
     * @param e
     */
    public void add(E e) {
        //特性1:新插入的元素首先放在数组最后,保持完全二叉树的特性
        data.addLast(e);
        siftUp(data.getSize() - 1);
    }

    /**
     * index 为i位置元素上浮。
     *
     * @param i
     */
    private void siftUp(int i) {
         //特性2:比较插入值和其父结点的大小关系,小于父结点则用父结点替换当前值,index位置上升为父结点
        // 当上浮元素大于父亲,继续上浮。并且不能上浮到0之上
        // 直到i 等于 0 或 比 父亲节点小了。
        while (i > 0 && data.get(i).compareTo(data.get(parent(i))) > 0) {
            // 数组Array中添加方法swap
            data.swap(i, parent(i));
            i = parent(i); // 这句话让i来到新的位置,使得循环可以查看新的位置是否还要大。
        }
    }

复制代码

最小堆的删除(DELETE)

看动画轻松理解「 堆 」

核心点:将最后一个元素填充到堆顶,然后不断的下沉这个元素。

假设要从节点 1 ,也可以称为取出节点 1 ,为了维持完全二叉树的特性 ,我们将最后一个元素 6 去替代这个 1 ;然后比较 1 和其子树的大小关系,如果比左右子树大(如果存在的话),就要从左右子树中找一个较小的值替换它,而它能自己就要跑到对应子树的位置,再次循环这种操作,直到没有子树比它小。

通过这样的操作,堆依然是堆,总结一下:

  • 找到要删除的节点(取出的节点)在数组中的位置
  • 用数组中最后一个元素替代这个位置的元素
  • 当前位置和其左右子树比较,保证符合最小堆的节点间规则
  • 删除最后一个元素

Show me the code:

public E findMin() {
        return data.get(0);
    }

    public E extractMin() {

        E ret = findMin();

        data.swap(0, data.getSize() - 1); // 0位置元素和最后一个元素互换。
        data.removeLast(); // 删除此时的最后一个元素(最小值)
        siftDown(0); // 对于0处进行siftDown操作

        return ret;
    }

    /**
     * k位置元素下移
     *
     * @param k
     */
    private void siftDown(int k) {

         while(leftChild(k) < data.getSize()){
            int j = leftChild(k); // 在此轮循环中,data[k]和data[j]交换位置
            if( j + 1 < data.getSize() &&
                    data.get(j + 1).compareTo(data.get(j)) < 0 )
                j ++;
            // data[j] 是 leftChild 和 rightChild 中的最小值

            if(data.get(k).compareTo(data.get(j)) >= 0 )
                break;

            data.swap(k, j);
            k = j;
        }
    }

复制代码

时间复杂度

对于有 n 个节点的堆来说,其高度 d = log2n + 1 。 根为第 0 层,则第 i 层结点个数为 2i, 考虑一个元素在堆中向下移动的距离。

  • 大约一半的结点深度为 d-1 ,不移动(叶)。
  • 四分之一的结点深度为 d-2 ,而它们至多能向下移动一层。
  • 树中每向上一层,结点的数目为前一层的一半,而子树高度加一

堆有 logn 层深,所以插入删除的平均时间和最差时间都是 O(logN)

优先队列(priority_queue)

普通队列是一种先进先出的数据结构,先放进队列的元素取值时优先被取出来。而优先队列是一种具有最高优先级元素先出的数据结构,比如每次取值都取最大的元素。

优先队列支持下面的操作:

  • a. 找出优先级最高的元素(最大或最小元素);
  • b. 删除一个具有最高优先级的元素;
  • c. 添加一个元素到集合中。

代码实现

public class PriorityQueue<E extends Comparable<E>> implements Queue<E> {

    private MaxHeap<E> maxHeap;

    public PriorityQueue(){
        maxHeap = new MaxHeap<>();
    }

    @Override
    public int getSize(){
        return maxHeap.size();
    }

    @Override
    public boolean isEmpty(){
        return maxHeap.isEmpty();
    }

    @Override
    public E getFront(){
        return maxHeap.findMax();
    }

    @Override
    public void enqueue(E e){
        maxHeap.add(e);
    }

    @Override
    public E dequeue(){
        return maxHeap.extractMax();
    }
}
复制代码

堆排序

理解了优先队列,堆排序的逻辑十分简单。

第一步:让数组形成堆有序状态;

第二步:把堆顶的元素放到数组最末尾,末尾的放到堆顶,在剩下的元素中下沉到正确位置,重复操作即可。

看动画轻松理解「 堆 」
看动画轻松理解「 堆 」

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

生态战略:设计未来企业新模式

生态战略:设计未来企业新模式

周文艺 / 机械工业出版社 / 2017-3 / 49.00

思想影响战略,战略决定组织。在充满高度不确定性的今天,企业要生存和发展,必须不断进行组织变革与进化,跨越不连续性的鸿沟。本书分析了大量互联网生态型企业的案例,从生态思维进化、生态战略构建和生态组织变革三个角度出发,全面阐述了企业的进化之路。 本书认为,生态是企业进化的核心思想,企业须重新定义增长模式,从封闭的企业链转向开放的价值网,不断创新文化、技术和连接,培育新物种,实现企业从技术生态位到......一起来看看 《生态战略:设计未来企业新模式》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试