iOS 沿曲线线性渐变的贝塞尔曲线

栏目: IOS · 发布时间: 6年前

内容简介:大致思路是,先获取到贝塞尔曲线上所有的点,然后在计算每个点的t值,然后根据t值来计算每个点的颜色。这种方式会在顶点的位置计算会有一些问题,整体来说只是一种思路,具体效果有待考验。如何获取贝塞尔曲线上所有的点?这个其实是比较简单的,可以利用现在已经得到了需要的点,剩下的就是计算每个点的t值了。计算t值也就是一个解方程的过程,这里说的是二次贝塞尔曲线,涉及到的就是一元二次方程。但是在像素点的坐标值都是整数型的,不是所有的点都是在曲线上的,所以解出来的 t 值多少会有些误差,不过效果还是可以的,对整体的渐变影响

大致思路是,先获取到贝塞尔曲线上所有的点,然后在计算每个点的t值,然后根据t值来计算每个点的颜色。这种方式会在顶点的位置计算会有一些问题,整体来说只是一种思路,具体效果有待考验。

1、获取贝塞尔曲线上所有的点

如何获取贝塞尔曲线上所有的点?这个其实是比较简单的,可以利用 UIBezierPath 画一条曲线,渲染到 CAShapeLayer (fillColor:clearColor,strokeColor:redColor) 上,然后遍历 CAShapeLayer 上的像素,只要像素的有色值那就是需要的点。同时由于这样渲染出的线条已经处理好了锯齿问题(即像素透明度), 所以为后面的处理省下了很多的事情。

2、计算每个点的 t 值

现在已经得到了需要的点,剩下的就是计算每个点的t值了。计算t值也就是一个解方程的过程,这里说的是二次贝塞尔曲线,涉及到的就是一元二次方程。但是在像素点的坐标值都是整数型的,不是所有的点都是在曲线上的,所以解出来的 t 值多少会有些误差,不过效果还是可以的,对整体的渐变影响不大。

// 根据 x 计算 t
- (float)baseOnXWithPoint:(CGPoint)point {
    float a = _startPoint.x - 2 * _controlPoint.x + _endPoint.x;
    float b = 2 * _controlPoint.x - 2 * _startPoint.x;
    float c = _startPoint.x - point.x;
    float condition = pow(b, 2) - 4 * a * c;
    if (a != 0 ) {
        if (condition >= 0) {
            NSArray *r = [self quadraticEquationWithA:a b:b c:c];
            if (r && r.count > 0) {
                float t = [self betterRWithRs:r targetPoint:point];
                return t;
            }
        }
    } else {
        // 一元一次方程求解
        float t = (-c)/b;
        return t;
    }
    return -1;
}

// 根据 y 计算 t
- (float)baseOnYWithPoint:(CGPoint)point {
    float a = _startPoint.y - 2 * _controlPoint.y + _endPoint.y;
    float b = 2 * _controlPoint.y - 2 * _startPoint.y;
    float c = _startPoint.y - point.y;
    float condition = pow(b, 2) - 4 * a * c;
    if ( a != 0) {
        if (condition >= 0) {
            NSArray *r = [self quadraticEquationWithA:a b:b c:c];
            if (r && r.count > 0) {
                float t = [self betterRWithRs:r targetPoint:point];
                return t;
            }
        }
    } else {
        // 一元一次方程求解
        float t = (-c)/b;
        return t;
    }

    return -1;
}
复制代码

这里会有两个方程,一个是以x为参数,一个以y为参数。这两个方程都会用到。为什么要用两个方程?因为有的点通过x或者y 并不能解得结果,比如说顶点附近的点,通过点做 x 轴的 垂线,可能与曲线并不会交点,也就意味着不会有解。所以如果以x为参数无解,那就再用y为参数的方程解一次,如果还没有解,那这个点就认为是不在线上的了。

在计算的过程中还有一个问题:如果以x 为参数计算,那么 X 方向上顶点附近的点(如果有顶点)计算出来的t值误差会比较大。所以在计算的时候做了一些判断,如果是顶点附近的点,以y为参数计算

- (float)quadraticEquationWithPoint:(CGPoint)point  {
    float t = [self baseOnXWithPoint:point];
    // 如果没有结果 即 t = -1,则依据Y从新计算
    // 如果计算的结果为 X 方向上的顶点,由于顶点位置计算不准确,所以根据Y从新计算
    if (t == -1 || fabs([self tForXAtVertexPoint] - t) < 0.1) {
        float otherT = [self baseOnYWithPoint:point];
        if (otherT == -1) {
            return t;
        }
        t = otherT;
    }
    return t;
}
复制代码

对于一元二次方程,是会有两个根的情况的,所以对于解出来的结果需要进行比对,找到与目标点最接近的t值

// 筛选结果
- (float)betterRWithRs:(NSArray *)rs targetPoint:(CGPoint)point{
    CGFloat distance = NSNotFound;
    NSInteger betterIndex = 0;
    for (NSInteger i = 0; i < rs.count; i ++) {
        float t = [[rs objectAtIndex:i] floatValue];
        CGFloat x = [self xAtT:t];
        CGFloat y = [self yAtT:t];
        if (distance == NSNotFound) {
            distance = [self distanceWithPoint:CGPointMake(x, y) point1:point];
            betterIndex = i;

        } else {
            if (distance > [self distanceWithPoint:CGPointMake(x, y) point1:point]) {
                distance = [self distanceWithPoint:CGPointMake(x, y) point1:point];
                betterIndex = i;
            }
        }

    }
    float t = [rs[betterIndex] floatValue];
    if (t >= 1) {
        if ([self isNearbyTargetPoint:_endPoint x:point.x y:point.y]) {
            return 1;
        } else {
            return -1;
        }
    }

    if (t <= 0) {
        if ([self isNearbyTargetPoint:_startPoint x:point.x y:point.y]) {
            return 0;
        } else {
            return -1;
        }
    }
    return [rs[betterIndex] floatValue];
}
复制代码

可以先看下效果。整体来说效果还是理想的,并且也支持了线宽的问题。

iOS 沿曲线线性渐变的贝塞尔曲线

Demo 地址


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

程序化广告实战

程序化广告实战

吴俊 / 机械工业出版社 / 2017-8-15 / 79.00元

中国程序化广告领域领袖级专家,私有化程序购买领域的布道者的一线实战笔记,宋星等近20位专家联袂推荐。从业务和技术双重视角系统讲解程序化广告的理论、知识、实践方法和关键要点。一起来看看 《程序化广告实战》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具