Prometheus MySQL Exporter源码阅读

栏目: 数据库 · 发布时间: 5年前

内容简介:常见的消息订阅模式有两种情形,一种是推,即产生一条消息时,即刻推送给所有客户端(或者对应的DB存储下来);另外一种是拉,即产生一条消息 时,并不做任何动作,而是当真正需要数据时,再去生成。对应到实际编程中,也有类似的概念,例如,实时计算vs延迟计算(lazy evaluation)。下面是Prometheus的架构图:

常见的消息订阅模式有两种情形,一种是推,即产生一条消息时,即刻推送给所有客户端(或者对应的DB存储下来);另外一种是拉,即产生一条消息 时,并不做任何动作,而是当真正需要数据时,再去生成。对应到实际编程中,也有类似的概念,例如,实时计算vs延迟计算(lazy evaluation)。

下面是Prometheus的架构图:

Prometheus MySQL Exporter源码阅读

https://prometheus.io/docs/introduction/overview/

可以看到,Prometheus使用拉取的模式(虽然配备了一个Pushgateway用于实现推的模式)。也就是说,Prometheus是客户端准备好数据并且存起来, Prometheus定期去拉取数据,这样做有一个好处,就是当服务器负载非常高时,Prometheus可以延迟拉取,等到负载降低之后再拉取数据,因而不会 出现被压垮的情况(如果服务端已经负载极高,而客户端再次多次重试就会出现这种情况)。

接下来我们进入正题,看看MySQL Exporter的实现。如我在如何阅读源代码 一文中所写,从main函数进入往往是个不错的方案:

func main() {
    // Generate ON/OFF flags for all scrapers.
    scraperFlags := map[collector.Scraper]*bool{}
    for scraper, enabledByDefault := range scrapers {
        defaultOn := "false"
        if enabledByDefault {
            defaultOn = "true"
        }

        f := kingpin.Flag(
            "collect."+scraper.Name(),
            scraper.Help(),
        ).Default(defaultOn).Bool()

        scraperFlags[scraper] = f
    }

    // Parse flags.
    log.AddFlags(kingpin.CommandLine)
    kingpin.Version(version.Print("mysqld_exporter"))
    kingpin.HelpFlag.Short('h')
    kingpin.Parse()

    // landingPage contains the HTML served at '/'.
    // TODO: Make this nicer and more informative.
    var landingPage = []byte(`<html>
<head><title>MySQLd exporter</title></head>
<body>
<h1>MySQLd exporter</h1>
<p><a href='` + *metricPath + `'>Metrics</a></p>
</body>
</html>
`)

    log.Infoln("Starting mysqld_exporter", version.Info())
    log.Infoln("Build context", version.BuildContext())

    dsn = os.Getenv("DATA_SOURCE_NAME")
    if len(dsn) == 0 {
        var err error
        if dsn, err = parseMycnf(*configMycnf); err != nil {
            log.Fatal(err)
        }
    }

    // Register only scrapers enabled by flag.
    log.Infof("Enabled scrapers:")
    enabledScrapers := []collector.Scraper{}
    for scraper, enabled := range scraperFlags {
        if *enabled {
            log.Infof(" --collect.%s", scraper.Name())
            enabledScrapers = append(enabledScrapers, scraper)
        }
    }
    handlerFunc := newHandler(collector.NewMetrics(), enabledScrapers)
    http.HandleFunc(*metricPath, prometheus.InstrumentHandlerFunc("metrics", handlerFunc))
    http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
        w.Write(landingPage)
    })

    log.Infoln("Listening on", *listenAddress)
    log.Fatal(http.ListenAndServe(*listenAddress, nil))
}

可以看到,MySQL Exporter提供了两个URL供访问,一个是 / ,用于打印一些基本的信息,另一个就是用于收集metrics的 /metrics 链接。 我们进去看看 /metrics 对应的handler,它是由 newHandler 生成的:

func newHandler(metrics collector.Metrics, scrapers []collector.Scraper) http.HandlerFunc {
    return func(w http.ResponseWriter, r *http.Request) {
        filteredScrapers := scrapers
        params := r.URL.Query()["collect[]"]
        // Use request context for cancellation when connection gets closed.
        ctx := r.Context()
        // If a timeout is configured via the Prometheus header, add it to the context.
        if v := r.Header.Get("X-Prometheus-Scrape-Timeout-Seconds"); v != "" {
            timeoutSeconds, err := strconv.ParseFloat(v, 64)
            if err != nil {
                log.Errorf("Failed to parse timeout from Prometheus header: %s", err)
            } else {
                if *timeoutOffset >= timeoutSeconds {
                    // Ignore timeout offset if it doesn't leave time to scrape.
                    log.Errorf(
                        "Timeout offset (--timeout-offset=%.2f) should be lower than prometheus scrape time (X-Prometheus-Scrape-Timeout-Seconds=%.2f).",
                        *timeoutOffset,
                        timeoutSeconds,
                    )
                } else {
                    // Subtract timeout offset from timeout.
                    timeoutSeconds -= *timeoutOffset
                }
                // Create new timeout context with request context as parent.
                var cancel context.CancelFunc
                ctx, cancel = context.WithTimeout(ctx, time.Duration(timeoutSeconds*float64(time.Second)))
                defer cancel()
                // Overwrite request with timeout context.
                r = r.WithContext(ctx)
            }
        }
        log.Debugln("collect query:", params)

        // Check if we have some "collect[]" query parameters.
        if len(params) > 0 {
            filters := make(map[string]bool)
            for _, param := range params {
                filters[param] = true
            }

            filteredScrapers = nil
            for _, scraper := range scrapers {
                if filters[scraper.Name()] {
                    filteredScrapers = append(filteredScrapers, scraper)
                }
            }
        }

        registry := prometheus.NewRegistry()
        registry.MustRegister(collector.New(ctx, dsn, metrics, filteredScrapers))

        gatherers := prometheus.Gatherers{
            prometheus.DefaultGatherer,
            registry,
        }
        // Delegate http serving to Prometheus client library, which will call collector.Collect.
        h := promhttp.HandlerFor(gatherers, promhttp.HandlerOpts{})
        h.ServeHTTP(w, r)
    }
}

而关键就在于 registry.MustRegister 要求给的参数是符合 Collector 接口的实现,也就是说,每次需要收集信息的时候,就会调用 Collector 接口的 Collect 方法:

type Collector interface {
    Describe(chan<- *Desc)
    Collect(chan<- Metric)
}

因此,我们看看 collector.New 返回的实现的 Collect 方法:

type Exporter struct {
    ctx      context.Context
    dsn      string
    scrapers []Scraper
    metrics  Metrics
}

func (e *Exporter) Collect(ch chan<- prometheus.Metric) {
    e.scrape(e.ctx, ch)

    ch <- e.metrics.TotalScrapes
    ch <- e.metrics.Error
    e.metrics.ScrapeErrors.Collect(ch)
    ch <- e.metrics.MySQLUp
}

func (e *Exporter) scrape(ctx context.Context, ch chan<- prometheus.Metric) {
    e.metrics.TotalScrapes.Inc()
    var err error

    scrapeTime := time.Now()
    db, err := sql.Open("mysql", e.dsn)
    if err != nil {
        log.Errorln("Error opening connection to database:", err)
        e.metrics.Error.Set(1)
        return
    }
    defer db.Close()

    // By design exporter should use maximum one connection per request.
    db.SetMaxOpenConns(1)
    db.SetMaxIdleConns(1)
    // Set max lifetime for a connection.
    db.SetConnMaxLifetime(1 * time.Minute)

    if err := db.PingContext(ctx); err != nil {
        log.Errorln("Error pinging mysqld:", err)
        e.metrics.MySQLUp.Set(0)
        e.metrics.Error.Set(1)
        return
    }

    e.metrics.MySQLUp.Set(1)

    ch <- prometheus.MustNewConstMetric(scrapeDurationDesc, prometheus.GaugeValue, time.Since(scrapeTime).Seconds(), "connection")

    version := getMySQLVersion(db)
    var wg sync.WaitGroup
    defer wg.Wait()
    for _, scraper := range e.scrapers {
        if version < scraper.Version() {
            continue
        }

        wg.Add(1)
        go func(scraper Scraper) {
            defer wg.Done()
            label := "collect." + scraper.Name()
            scrapeTime := time.Now()
            if err := scraper.Scrape(ctx, db, ch); err != nil {
                log.Errorln("Error scraping for "+label+":", err)
                e.metrics.ScrapeErrors.WithLabelValues(label).Inc()
                e.metrics.Error.Set(1)
            }
            ch <- prometheus.MustNewConstMetric(scrapeDurationDesc, prometheus.GaugeValue, time.Since(scrapeTime).Seconds(), label)
        }(scraper)
    }
}

可以看到最后,收集器并发收集所有指标,每个具体指标都会实现 Scraper 这个接口:

// Scraper is minimal interface that let's you add new prometheus metrics to mysqld_exporter.
type Scraper interface {
    // Name of the Scraper. Should be unique.
    Name() string

    // Help describes the role of the Scraper.
    // Example: "Collect from SHOW ENGINE INNODB STATUS"
    Help() string

    // Version of MySQL from which scraper is available.
    Version() float64

    // Scrape collects data from database connection and sends it over channel as prometheus metric.
    Scrape(ctx context.Context, db *sql.DB, ch chan<- prometheus.Metric) error
}

那接下来思路就很清晰了,每个指标都实现这个接口就ok了,而具体的指标,就在 Scrape 这个接口里,从数据库里查出来,并且利用 各种方式把需要的数据提取出来,例如文本解析,正则等等。我们来看一个简单的收集器:

// Scrape collects data from database connection and sends it over channel as prometheus metric.
func (ScrapeEngineInnodbStatus) Scrape(ctx context.Context, db *sql.DB, ch chan<- prometheus.Metric) error {
    rows, err := db.QueryContext(ctx, engineInnodbStatusQuery)
    if err != nil {
        return err
    }
    defer rows.Close()

    var typeCol, nameCol, statusCol string
    // First row should contain the necessary info. If many rows returned then it's unknown case.
    if rows.Next() {
        if err := rows.Scan(&typeCol, &nameCol, &statusCol); err != nil {
            return err
        }
    }

    // 0 queries inside InnoDB, 0 queries in queue
    // 0 read views open inside InnoDB
    rQueries, _ := regexp.Compile(`(\d+) queries inside InnoDB, (\d+) queries in queue`)
    rViews, _ := regexp.Compile(`(\d+) read views open inside InnoDB`)

    for _, line := range strings.Split(statusCol, "\n") {
        if data := rQueries.FindStringSubmatch(line); data != nil {
            value, _ := strconv.ParseFloat(data[1], 64)
            ch <- prometheus.MustNewConstMetric(
                newDesc(innodb, "queries_inside_innodb", "Queries inside InnoDB."),
                prometheus.GaugeValue,
                value,
            )
            value, _ = strconv.ParseFloat(data[2], 64)
            ch <- prometheus.MustNewConstMetric(
                newDesc(innodb, "queries_in_queue", "Queries in queue."),
                prometheus.GaugeValue,
                value,
            )
        } else if data := rViews.FindStringSubmatch(line); data != nil {
            value, _ := strconv.ParseFloat(data[1], 64)
            ch <- prometheus.MustNewConstMetric(
                newDesc(innodb, "read_views_open_inside_innodb", "Read views open inside InnoDB."),
                prometheus.GaugeValue,
                value,
            )
        }
    }

    return nil
}

就如上面所说,使用正则表达式提取需要的信息。

本文到此结束。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Linux设备驱动程序

Linux设备驱动程序

科波特 / 魏永明、耿岳、钟书毅 / 中国电力出版社 / 2006-1-1 / 69.00元

本书是经典著作《Linux设备驱动程序》的第三版。如果您希望在Linux操作系统上支持计算机外部设备,或者在Linux上运行新的硬件,或者只是希望一般性地了解Linux内核的编程,就一定要阅读本书。本书描述了如何针对各种设备编写驱动程序,而在过去,这些内容仅仅以口头形式交流,或者零星出现在神秘的代码注释中。 本书的作者均是Linux社区的领导者。Jonathan Corbet虽不是专职的内核......一起来看看 《Linux设备驱动程序》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

MD5 加密
MD5 加密

MD5 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试