内容简介:常见的消息订阅模式有两种情形,一种是推,即产生一条消息时,即刻推送给所有客户端(或者对应的DB存储下来);另外一种是拉,即产生一条消息 时,并不做任何动作,而是当真正需要数据时,再去生成。对应到实际编程中,也有类似的概念,例如,实时计算vs延迟计算(lazy evaluation)。下面是Prometheus的架构图:
常见的消息订阅模式有两种情形,一种是推,即产生一条消息时,即刻推送给所有客户端(或者对应的DB存储下来);另外一种是拉,即产生一条消息 时,并不做任何动作,而是当真正需要数据时,再去生成。对应到实际编程中,也有类似的概念,例如,实时计算vs延迟计算(lazy evaluation)。
下面是Prometheus的架构图:
https://prometheus.io/docs/introduction/overview/
可以看到,Prometheus使用拉取的模式(虽然配备了一个Pushgateway用于实现推的模式)。也就是说,Prometheus是客户端准备好数据并且存起来, Prometheus定期去拉取数据,这样做有一个好处,就是当服务器负载非常高时,Prometheus可以延迟拉取,等到负载降低之后再拉取数据,因而不会 出现被压垮的情况(如果服务端已经负载极高,而客户端再次多次重试就会出现这种情况)。
接下来我们进入正题,看看MySQL Exporter的实现。如我在如何阅读源代码 一文中所写,从main函数进入往往是个不错的方案:
func main() { // Generate ON/OFF flags for all scrapers. scraperFlags := map[collector.Scraper]*bool{} for scraper, enabledByDefault := range scrapers { defaultOn := "false" if enabledByDefault { defaultOn = "true" } f := kingpin.Flag( "collect."+scraper.Name(), scraper.Help(), ).Default(defaultOn).Bool() scraperFlags[scraper] = f } // Parse flags. log.AddFlags(kingpin.CommandLine) kingpin.Version(version.Print("mysqld_exporter")) kingpin.HelpFlag.Short('h') kingpin.Parse() // landingPage contains the HTML served at '/'. // TODO: Make this nicer and more informative. var landingPage = []byte(`<html> <head><title>MySQLd exporter</title></head> <body> <h1>MySQLd exporter</h1> <p><a href='` + *metricPath + `'>Metrics</a></p> </body> </html> `) log.Infoln("Starting mysqld_exporter", version.Info()) log.Infoln("Build context", version.BuildContext()) dsn = os.Getenv("DATA_SOURCE_NAME") if len(dsn) == 0 { var err error if dsn, err = parseMycnf(*configMycnf); err != nil { log.Fatal(err) } } // Register only scrapers enabled by flag. log.Infof("Enabled scrapers:") enabledScrapers := []collector.Scraper{} for scraper, enabled := range scraperFlags { if *enabled { log.Infof(" --collect.%s", scraper.Name()) enabledScrapers = append(enabledScrapers, scraper) } } handlerFunc := newHandler(collector.NewMetrics(), enabledScrapers) http.HandleFunc(*metricPath, prometheus.InstrumentHandlerFunc("metrics", handlerFunc)) http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) { w.Write(landingPage) }) log.Infoln("Listening on", *listenAddress) log.Fatal(http.ListenAndServe(*listenAddress, nil)) }
可以看到,MySQL Exporter提供了两个URL供访问,一个是 /
,用于打印一些基本的信息,另一个就是用于收集metrics的 /metrics
链接。 我们进去看看 /metrics
对应的handler,它是由 newHandler
生成的:
func newHandler(metrics collector.Metrics, scrapers []collector.Scraper) http.HandlerFunc { return func(w http.ResponseWriter, r *http.Request) { filteredScrapers := scrapers params := r.URL.Query()["collect[]"] // Use request context for cancellation when connection gets closed. ctx := r.Context() // If a timeout is configured via the Prometheus header, add it to the context. if v := r.Header.Get("X-Prometheus-Scrape-Timeout-Seconds"); v != "" { timeoutSeconds, err := strconv.ParseFloat(v, 64) if err != nil { log.Errorf("Failed to parse timeout from Prometheus header: %s", err) } else { if *timeoutOffset >= timeoutSeconds { // Ignore timeout offset if it doesn't leave time to scrape. log.Errorf( "Timeout offset (--timeout-offset=%.2f) should be lower than prometheus scrape time (X-Prometheus-Scrape-Timeout-Seconds=%.2f).", *timeoutOffset, timeoutSeconds, ) } else { // Subtract timeout offset from timeout. timeoutSeconds -= *timeoutOffset } // Create new timeout context with request context as parent. var cancel context.CancelFunc ctx, cancel = context.WithTimeout(ctx, time.Duration(timeoutSeconds*float64(time.Second))) defer cancel() // Overwrite request with timeout context. r = r.WithContext(ctx) } } log.Debugln("collect query:", params) // Check if we have some "collect[]" query parameters. if len(params) > 0 { filters := make(map[string]bool) for _, param := range params { filters[param] = true } filteredScrapers = nil for _, scraper := range scrapers { if filters[scraper.Name()] { filteredScrapers = append(filteredScrapers, scraper) } } } registry := prometheus.NewRegistry() registry.MustRegister(collector.New(ctx, dsn, metrics, filteredScrapers)) gatherers := prometheus.Gatherers{ prometheus.DefaultGatherer, registry, } // Delegate http serving to Prometheus client library, which will call collector.Collect. h := promhttp.HandlerFor(gatherers, promhttp.HandlerOpts{}) h.ServeHTTP(w, r) } }
而关键就在于 registry.MustRegister
要求给的参数是符合 Collector
接口的实现,也就是说,每次需要收集信息的时候,就会调用 Collector
接口的 Collect
方法:
type Collector interface { Describe(chan<- *Desc) Collect(chan<- Metric) }
因此,我们看看 collector.New
返回的实现的 Collect
方法:
type Exporter struct { ctx context.Context dsn string scrapers []Scraper metrics Metrics } func (e *Exporter) Collect(ch chan<- prometheus.Metric) { e.scrape(e.ctx, ch) ch <- e.metrics.TotalScrapes ch <- e.metrics.Error e.metrics.ScrapeErrors.Collect(ch) ch <- e.metrics.MySQLUp } func (e *Exporter) scrape(ctx context.Context, ch chan<- prometheus.Metric) { e.metrics.TotalScrapes.Inc() var err error scrapeTime := time.Now() db, err := sql.Open("mysql", e.dsn) if err != nil { log.Errorln("Error opening connection to database:", err) e.metrics.Error.Set(1) return } defer db.Close() // By design exporter should use maximum one connection per request. db.SetMaxOpenConns(1) db.SetMaxIdleConns(1) // Set max lifetime for a connection. db.SetConnMaxLifetime(1 * time.Minute) if err := db.PingContext(ctx); err != nil { log.Errorln("Error pinging mysqld:", err) e.metrics.MySQLUp.Set(0) e.metrics.Error.Set(1) return } e.metrics.MySQLUp.Set(1) ch <- prometheus.MustNewConstMetric(scrapeDurationDesc, prometheus.GaugeValue, time.Since(scrapeTime).Seconds(), "connection") version := getMySQLVersion(db) var wg sync.WaitGroup defer wg.Wait() for _, scraper := range e.scrapers { if version < scraper.Version() { continue } wg.Add(1) go func(scraper Scraper) { defer wg.Done() label := "collect." + scraper.Name() scrapeTime := time.Now() if err := scraper.Scrape(ctx, db, ch); err != nil { log.Errorln("Error scraping for "+label+":", err) e.metrics.ScrapeErrors.WithLabelValues(label).Inc() e.metrics.Error.Set(1) } ch <- prometheus.MustNewConstMetric(scrapeDurationDesc, prometheus.GaugeValue, time.Since(scrapeTime).Seconds(), label) }(scraper) } }
可以看到最后,收集器并发收集所有指标,每个具体指标都会实现 Scraper
这个接口:
// Scraper is minimal interface that let's you add new prometheus metrics to mysqld_exporter. type Scraper interface { // Name of the Scraper. Should be unique. Name() string // Help describes the role of the Scraper. // Example: "Collect from SHOW ENGINE INNODB STATUS" Help() string // Version of MySQL from which scraper is available. Version() float64 // Scrape collects data from database connection and sends it over channel as prometheus metric. Scrape(ctx context.Context, db *sql.DB, ch chan<- prometheus.Metric) error }
那接下来思路就很清晰了,每个指标都实现这个接口就ok了,而具体的指标,就在 Scrape
这个接口里,从数据库里查出来,并且利用 各种方式把需要的数据提取出来,例如文本解析,正则等等。我们来看一个简单的收集器:
// Scrape collects data from database connection and sends it over channel as prometheus metric. func (ScrapeEngineInnodbStatus) Scrape(ctx context.Context, db *sql.DB, ch chan<- prometheus.Metric) error { rows, err := db.QueryContext(ctx, engineInnodbStatusQuery) if err != nil { return err } defer rows.Close() var typeCol, nameCol, statusCol string // First row should contain the necessary info. If many rows returned then it's unknown case. if rows.Next() { if err := rows.Scan(&typeCol, &nameCol, &statusCol); err != nil { return err } } // 0 queries inside InnoDB, 0 queries in queue // 0 read views open inside InnoDB rQueries, _ := regexp.Compile(`(\d+) queries inside InnoDB, (\d+) queries in queue`) rViews, _ := regexp.Compile(`(\d+) read views open inside InnoDB`) for _, line := range strings.Split(statusCol, "\n") { if data := rQueries.FindStringSubmatch(line); data != nil { value, _ := strconv.ParseFloat(data[1], 64) ch <- prometheus.MustNewConstMetric( newDesc(innodb, "queries_inside_innodb", "Queries inside InnoDB."), prometheus.GaugeValue, value, ) value, _ = strconv.ParseFloat(data[2], 64) ch <- prometheus.MustNewConstMetric( newDesc(innodb, "queries_in_queue", "Queries in queue."), prometheus.GaugeValue, value, ) } else if data := rViews.FindStringSubmatch(line); data != nil { value, _ := strconv.ParseFloat(data[1], 64) ch <- prometheus.MustNewConstMetric( newDesc(innodb, "read_views_open_inside_innodb", "Read views open inside InnoDB."), prometheus.GaugeValue, value, ) } } return nil }
就如上面所说,使用正则表达式提取需要的信息。
本文到此结束。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 【源码阅读】AndPermission源码阅读
- 【源码阅读】Gson源码阅读
- 如何阅读Java源码 ,阅读java的真实体会
- 我的源码阅读之路:redux源码剖析
- JDK源码阅读(六):HashMap源码分析
- 如何阅读源码?
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
深入理解Android内核设计思想(第2版 套装上下册)
林学森 / 人民邮电出版社 / 2017-7-1 / 158
全书从操作系统的基础知识入手,全面剖析进程/线程、内存管理、Binder机制、GUI显示系统、多媒体管理、输入系统、虚拟机等核心技术在Android中的实现原理。书中讲述的知识点大部分来源于工程项目研发,因而具有较强的实用性,希望可以让读者“知其然,更知其所以然”。本书分为编译篇、系统原理篇、应用原理篇、系统工具篇,共4篇25章,基本涵盖了参与Android开发所需具备的知识,并通过大量图片与实例......一起来看看 《深入理解Android内核设计思想(第2版 套装上下册)》 这本书的介绍吧!