谷歌开源 TensorFlow 的简化库 JAX

栏目: 数据库 · 发布时间: 7年前

内容简介:谷歌开源了一个 TensorFlow 的简化库 JAX。JAX 结合了 Autograd 和 XLA,专门用于高性能机器学习研究。

谷歌开源了一个 TensorFlow 的简化库 JAX。

谷歌开源 TensorFlow 的简化库 JAX

JAX 结合了 Autograd 和 XLA,专门用于高性能机器学习研究。

凭借 Autograd,JAX 可以求导循环、分支、递归和闭包函数,并且它可以进行三阶求导。通过 grad,它支持自动模式反向求导(反向传播)和正向求导,且二者可以任何顺序任意组合。

得力于 XLA,可以在 GPU 和 TPU 上编译和运行 NumPy 程序。默认情况下,编译发生在底层,库调用实时编译和执行。但是 JAX 还允许使用单一函数 API jit 将 Python 函数及时编译为 XLA 优化的内核。编译和自动求导可以任意组合,因此可以在 Python 环境下实现复杂的算法并获得最大的性能。

demo:

import jax.numpy as np
from jax import grad, jit, vmap
from functools import partial

def predict(params, inputs):
  for W, b in params:
    outputs = np.dot(inputs, W) + b
    inputs = np.tanh(outputs)
  return outputs

def logprob_fun(params, inputs, targets):
  preds = predict(params, inputs)
  return np.sum((preds - targets)**2)

grad_fun = jit(grad(logprob_fun))  # compiled gradient evaluation function
perex_grads = jit(vmap(grad_fun, in_axes=(None, 0, 0)))  # fast per-example grads

更深入地看,JAX 实际上是一个可扩展的可组合函数转换系统,grad 和 jit 都是这种转换的实例。

项目地址:https://github.com/google/JAX


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Java解惑

Java解惑

布洛赫、加夫特 / 陈昊鹏 / 人民邮电出版社 / 2006-1 / 39.00元

本书特写了95个有关Java或其类库的陷阱和缺陷的谜题,其中大多数谜题都采用了短程序的方式,这些程序的行为与其看似的大相径庭。在每个谜题之后都给出了详细的解惑方案,这些解惑方案超越了对程序行为的简单解释,向读者展示了如何一劳永逸地避免底层的陷阱与缺陷。 本书趣味十足、寓教于乐,适合于具备Java知识的学习者和有编程经验的Java程序员。一起来看看 《Java解惑》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换