内容简介:最近看代码,发现了一个敏感词检测是用原理:运行结果:
最近看代码,发现了一个敏感词检测是用 前缀树 写的,看起来速度蛮快,毕竟是拿空间换时间,LOG倍速。但是缺点也很明显,待检测文本需要与敏感词词库中的值完全匹配。所以对于简短的词法比较合适。
原理:
- 每一个节点可以有多个子节点
- 节点“存储”字符, 节点与节点之间的连线自动形成单词。 如a节点与d节点,之间的连线就是单词 ad
- 节点可能是叶子节点,此时也是一个单词的“终点”,否则是其他拥有相同前缀的节点的“过客”, wordcount要加一。
- 删除一个单词,则对应节点上的“过客”都要减一,直至减至叶子节点。
# coding: utf8 MAX_TREE_WIDTH = 26 INIT_CHAR = 'a' forbiddenwords = """ fuck fucker damn silly """ class TrieNode(object): def __init__(self): self.nodes = [None] * MAX_TREE_WIDTH self.wordcount = 0 self.isend = 0 class TrieTree(object): def __init__(self): self.root = TrieNode() def add(self, word): word = word.lower() curnode = self.root for char in word: index = ord(char) - ord(INIT_CHAR) if curnode.nodes[index] is None: curnode.nodes[index] = TrieNode() curnode = curnode.nodes[index] curnode.wordcount += 1 curnode.isend = 1 def search(self, word): word = word.lower() curnode = self.root for char in word: index = ord(char) - ord(INIT_CHAR) if curnode.nodes[index] is None: return -1 curnode = curnode.nodes[index] return curnode.wordcount def countstartswith(self, prefix): curnode = self.root for char in prefix: index = ord(char) - ord(INIT_CHAR) if curnode.nodes[index] is None: return -1 curnode = curnode.nodes[index] return curnode.wordcount def delete(self, word): if self.countstartswith(word) > 0: curnode = self.root for char in word: index = ord(char) - ord(INIT_CHAR) curnode.nodes[index].wordcount -= 1 if curnode.nodes[index].wordcount == 0: curnode.nodes[index] = None return curnode = curnode.nodes[index] curnode.isend = 0 if __name__ == "__main__": print("hello trie tree.") tree = TrieTree() tree.add("h") tree.add("He") tree.add("hEl") tree.add("helL") tree.add("hello") print(tree.search('he')) print(tree.countstartswith("h")) print(tree.countstartswith("hel")) tree.delete("hel") print(tree.countstartswith("hel")) print(tree.countstartswith("guo")) words = [item for item in forbiddenwords.strip("").split("\n") if item != ''] for word in words: print("adding word: {}".format(word)) tree.add(word) # test sequence teststr = "you a silly mother fucker" tests = teststr.split(" ") for test in tests: print("{} --> {}".format(test, tree.search(test)))
运行结果:
hello trie tree. 4 5 3 2 -1 adding word: fuck adding word: fucker adding word: damn adding word: silly you --> -1 a --> -1 silly --> 1 mother --> -1 fucker --> 1
相较于之前 基于 朴素贝叶斯分类算法 的golang 与 PHP 结合的例子,效率,准确性,适用性都很逊。这也跟场景息息相关,选对了场景,前缀树会给出一个令人满意的答复的。
以上所述就是小编给大家介绍的《前缀树》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。