内容简介:这个列表中的论文主要是关于
这个列表中的论文主要是关于 深度强化学习 和RL / AI,希望它对大家有所帮助。有关NeurIPS 2018中强化学习论文的清单如下,按第一作者姓氏的字母顺序排列。
-
Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J. Zico Kolter.
Differentiable MPC for end-to-end planning and control.
-
Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando de Freitas.
Playing hard exploration games by watching YouTube.
-
Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee.
Sample-efficient reinforcement learning with stochastic ensemble value expansion.
-
Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine.
Data-efficient model-based reinforcement learning with deep probabilistic dynamics models.
-
Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico Kolter.
End-to-end differentiable physics for learning and control.
-
Amir massoud Farahmand.
Iterative value-aware model learning.
-
Justin Fu, Sergey Levine, Dibya Ghosh, Larry Yang, and Avi Singh.
An event-based framework for task specification and control.
-
Vikash Goel, Jameson Weng, and Pascal Poupart.
Unsupervised video object segmentation for deep reinforcement learning.
-
Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Meta-reinforcement learning of structured exploration strategies.
-
David Ha and Jürgen Schmidhuber.
Recurrent world models facilitate policy evolution.
-
Nick Haber, Damian Mrowca, Stephanie Wang, Li Fei-Fei, and Daniel Yamins. Learning to play with intrinsically-motivated, self-aware agents.
-
Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, Jonathan Ho, and Pieter Abbeel.
Evolved policy gradients.
-
Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, LIANHUI Qin, Xiaodan Liang, Haoye Dong, and Eric Xing.
Deep generative models with learnable knowledge constraints.
-
Jiexi Huang, Fa Wu,Doina Precup, and Yang Cai.
Learning safe policies with expert guidance.
-
Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Xiaojin Zhu.
Adversarial attacks on stochastic bandits.
-
Raksha Kumaraswamy, Matthew Schlegel, Adam White, and Martha White. Context-dependent upper-confidence bounds for directed exploration.
-
Isaac Lage, Andrew Ross, Samuel J Gershman, Been Kim, and Finale Doshi-Velez.
Human-in-the-loop interpretability prior.
-
Marc Lanctot, Sriram Srinivasan, Vinicius Zambaldi, Julien Perolat, karl Tuyls, Remi Munos, and Michael Bowling.
Actor-critic policy optimization in partially observable multiagent environments.
-
Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, and Greg Imwalle.
Data center cooling using model-predictive control.
-
Jan Leike, Borja Ibarz, Dario Amodei, Geoffrey Irving, andShane Legg.
Reward learning from human preferences and demonstrations in Atari.
-
Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song.
Learning temporal point processes via reinforcement learning.
-
Yuan Li, Xiaodan Liang, Zhiting Hu, and Eric Xing.
Hybrid retrieval-generation reinforced agent for medical image report generation.
-
Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V Le, and Ni Lao. Memory augmented policy optimization for program synthesis with generalization.
-
Qiang Liu, Lihong Li, Ziyang Tang, and Denny Zhou.
Breaking the curse of horizon: Infinite-horizon off-policy estimation.
-
Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski, Aldo A Faisal, Finale Doshi-Velez, and Emma Brunskill.
Representation balancing MDPs for off-policy policy evaluation.
-
Tyler Lu, Craig Boutilier, and Dale Schuurmans.
Non-delusionalQ-learningand value-iteration.
-
Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet.
Are GANs created equal? a large-scale study.
-
David Alvarez Melis and Tommi Jaakkola.
Towards robust interpretability with self-explaining neural networks.
-
Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
DeepProbLog: Neural probabilistic logic programming.
-
Horia Mania, Aurelia Guy, and Benjamin Recht.
Simple random search of static linear policies is competitive for reinforcement learning.
-
Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Josh Tenenbaum, and Daniel Yamins.
A flexible neural representation for physics prediction.
-
Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine.
Data-efficient hierarchical reinforcement learning.
-
Ashvin Nair, Vitchyr Pong, Shikhar Bahl, Sergey Levine, Steven Lin, and Murtaza Dalal.
Visual goal-conditioned reinforcement learning by representation learning.
-
Matthew O’Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, and John C Duchi.
Scalable end-to-end autonomous vehicle testing via rare-event simulation.
-
Ian Osband, John S Aslanides, and Albin Cassirer.
Randomized prior functions for deep reinforcement learning.
-
Matthew Riemer, Miao Liu, and Gerald Tesauro.
Learning abstract options.
-
Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Theophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Tim Lillicrap.
Relational recurrent neural networks.
-
Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.
How does batch normalization help optimization? (no, it is not about internal covariate shift).
-
Ozan Sener and Vladlen Koltun.
Multi-task learning as multi-objective optimization.
-
Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon.
Multi-agent generative adversarial imitation learning.
-
Wen Sun, Geoffrey Gordon, Byron Boots, and J. Bagnell.
Dual policy iteration.
-
Aviv Tamar, Pieter Abbeel, Ge Yang, Thanard Kurutach, and Stuart Russell. Learning plannable representations with causal InfoGAN.
-
Andrew Trask, Felix Hill, Scott Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic logic units.
-
Tongzhou Wang, YI WU, David Moore, and Stuart Russell.
Meta-learning MCMC proposals.
-
Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Gesmundo.
Transfer learning with neural AutoML.
-
Kelvin Xu, Chelsea Finn, and Sergey Levine.
Uncertainty-aware few-shot learning with probabilistic model-agnostic meta-learning.
-
Zhongwen Xu, Hado van Hasselt, and David Silver.
Meta-gradient reinforcement learning.
-
Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum.
Neural-Symbolic VQA: Disentangling reasoning from vision and language understanding.
-
Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William Byrd, Matthew Might, Raquel Urtasun, and Richard Zemel.
Neural guided con- straint logic programming for program synthesis.
-
Yu Zhang, Ying Wei, and Qiang Yang.
Learning to multitask.
-
Zeyu Zheng, Junhyuk Oh, and Satinder Singh.
On learning intrinsic rewards for policy gradient methods.
信息来源: https://medium.com/@yuxili/nips-2018-rl-papers-to-read-5bc1edb85a28
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Implementing Responsive Design
Tim Kadlec / New Riders / 2012-7-31 / GBP 27.99
New devices and platforms emerge daily. Browsers iterate at a remarkable pace. Faced with this volatile landscape we can either struggle for control or we can embrace the inherent flexibility of the w......一起来看看 《Implementing Responsive Design》 这本书的介绍吧!