内容简介:该项目帮助前端开发人员可视化机器学习模型架构,以及内部功能抽象、中间数据操作和最终推论生成的过程。TensorSpace.js 使用
TensorSpace.js 提供了开源的,基于浏览器的神经网络数据可视化框架,通过支持使用 TensorFlow.js 、 Keras 或 TensorFlow 创建的预先训练好的模型来完善日益增长的机器学习需求。
该项目帮助前端开发人员可视化机器学习模型架构,以及内部功能抽象、中间数据操作和最终推论生成的过程。
TensorSpace.js 使用 Three.js 作为其底层 3D 绘图 API。该项目添加了功能和时序模型的数据可视化,包括 LeNet、AlexNet、YOLOv2、ResNet-50、Vgg16、ACGAN、MobileNetv1、Inceptionv3 等等。可以在 TensorSpace.js Playground 查看各个模型的示例。
TensorSpace 层 提供了一个容器来展示内部层数据和结构的 3D 可视化,包括如密度、扁平化、形变、池化等功能,在某种程度上会让那些使用机器学习 API 工作的人感到很熟悉。
想要开始使用 TensorSpace.js,首先要通过 npm 或 yarn 安装它:
复制代码
npm install tensorspace # or yarnaddtensorspace
然后根据 TensorSpace.js HelloWorld 文档 进行操作,或根据这个 例子使用 CodePen 。
https://codepen.io/syt123450/pen/YRwZGg
最新的 TensorSpace.js 0.2 版本 中添加了很多功能,并修改了一些错误。尽管该项目还没有发布稳定的版本,但是它也提供了一系列有用的机器学习数据可视化工具。
TensorSpace.js 是在 Apache 2 许可证下的开源软件项目。可以通过 TensorSpace.js GitHub 项目 对它作出贡献或反馈,但必须遵守 TensorSpace.js 的贡献指南 。
查看英文原文: TensorSpace.js Delivers Neural Network 3D Visualization Framework
以上所述就是小编给大家介绍的《开源 TensorSpace.js:基于浏览器的神经网络 3D 可视化框架》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- PyTorch可视化卷积神经网络
- 可视化探索卷积神经网络提取特征
- PyTorch可视化理解卷积神经网络
- 通过可视化隐藏表示,更好地理解神经网络
- NeurIPS 2018提前看:可视化神经网络泛化能力
- 通过可视化体验人工智能神经网络工具——TensorFlow PlayGround来认识神经网络
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
人类2.0
皮埃罗∙斯加鲁菲(Piero Scaruffi) / 闫景立、牛金霞 / 中信出版集团股份有限公司 / 2017-2-1 / CNY 68.00
《人类2.0:在硅谷探索科技未来》从在众多新技术中选择了他认为最有潜力塑造科技乃至人类未来的新技术进行详述,其中涉及大数据、物联网、人工智能、纳米科技、虚拟现实、生物技术、社交媒体、区块链、太空探索和3D打印。皮埃罗用一名硅谷工程师的严谨和一名历史文化学者的哲学视角,不仅在书中勾勒出这些新技术的未来演变方向和面貌,还对它们对社会和人性的影响进行了深入思考。 为了补充和佐证其观点,《人类2.0......一起来看看 《人类2.0》 这本书的介绍吧!