线性回归数学推导

栏目: 数据库 · 发布时间: 5年前

内容简介:概率(probability):描述已知参数时的随机变量的输出结果;似然函数(likelihood):用来描述已知随机变量输出结果时,未知参数的可能取值。似然函数和密度函数是完全不同的两个数学对象,前者是关于 的函数,后者是关于 的函数。

概率(probability):描述已知参数时的随机变量的输出结果;

似然函数(likelihood):用来描述已知随机变量输出结果时,未知参数的可能取值。

似然函数和密度函数是完全不同的两个数学对象,前者是关于 的函数,后者是关于 的函数。

2、高斯分布

数学期望(mean):试验中,每次可能结果的概率乘以其结果的总和。

(伯努利)大数定律:当试验次数足够多时,事件发生的频率无穷接近于该事件发生的概率。

伯努利试验:设试验E只可能有两种结果:“A”和“非A”

n重伯努利试验:将E独立的重复地进行n次,则称这一穿重复的独立试验为n重伯努利试验

二项分布(伯努利分布):将一伯努利试验重复了n次,在这n次试验中成功次数k,k为随机变量,称为二次随机变量,其分布称为二项分布

正态分布:又称“高斯分布”

3、对数公式

4、矩阵计算

矩阵转置:行变列,列变行。

矩阵乘法:A的列数必须与B的行数相等

矩阵求导

二、推导

1、线性回归公式

当存在多个特征参数的时候,不同的特征参数对目标函数值有不同的权重参数。

使用矩阵来表示

2、计算误差

误差项:真实值和预测值之间存在的一个误差,我们通常希望误差越小越好。

误差项符合高斯分布,所以

要计算某些参数和特征组合让误差最小,这里引入似然函数

因不考虑定值,得出 越小越好


以上所述就是小编给大家介绍的《线性回归数学推导》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

UNIX系统编程: 通信、并发与线程

UNIX系统编程: 通信、并发与线程

【美】Kay Robbins、Steve Robbins / 师蓉 / 电子工业出版社 / 2018-5 / 198

《UNIX系统编程: 通信、并发与线程》是一本基于最新UNIX标准的完备的参考书,对UNIX编程的要点进行了清晰易懂的介绍,从一些用于说明如何使用系统调用的短小代码段开始,逐渐过渡到能帮助读者扩展自己技能水平的实际项目中。《UNIX系统编程: 通信、并发与线程》中对通信、并发和线程问题进行了深入探讨,对复杂的概念(如信号和并发)进行了全面且清晰的解释,还覆盖了与文件、信号、信号量、POSIX线程和......一起来看看 《UNIX系统编程: 通信、并发与线程》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具