Spark Streaming--应用与实战(一)

栏目: 数据库 · 发布时间: 7年前

内容简介:Spark Streaming--应用与实战(一)

接下来的几篇博客是一个连续的部分,主要分为了:

  1. SparkStreaming-应用与实战(一),讲解背景与架构改造,以及为什么使用spark streaming
  2. SparkStreaming-应用与实战(二),通过代码实现具体细节,并运行项目
  3. SparkStreaming-应用与实战(三),对streaming监控的介绍以及解决实际问题
  4. SparkStreaming-应用与实战(四),对项目做压测与相关的优化

一、问题描述

  • 有一块业务主要是做爬虫抓取与数据输出,通过大数据这边提供的SOA服务入库到HBase,架构大致如下:

    Spark Streaming--应用与实战(一)

以对于以上的架构存在一些问题,我们可以看见数据在Dubbox服务阶段处理后直接通过HBase API入库了HBase,中间并没做任何缓冲,要是HBase出现了问题整个集群都完蛋,没法写入数据,数据还丢失,HBase这边压力也相当大,针对这一点,对入库HBase这个阶段做了一些改造。

二、架构改造

改造后的架构,爬虫通过接口服务,入库到Kafka,Spark streaming去消费kafka的数据,入库到HBase.核心组件如下图所示:

Spark Streaming--应用与实战(一)
  • 为什么不直接入库到HBase,这样做有什么好处?
  1. 缓解了HBase这边峰值的压力,并且流量可控
  2. HBase集群出现问题或者挂掉,都不会照成数据丢失的问题
  3. 增加了吞吐量

三、 为什么选择Kafka和Spark streaming

  1. 由于Kafka它简单的架构以及出色的吞吐量.
  2. Kafka与Spark streaming也有专门的集成模块.
  3. Spark的容错,以及现在技术相当的成熟.

1.除非注明,博文均为原创,转载请标明地址: http://blog.xiaoxiaomo.com/2017/06/10/SparkStreaming-应用与实战-一/

2.文章作者:小小默

3.发布时间:2017年06月10日 - 16时37分

4.如果本文帮到了您,不妨点一下右下角的 分享到 按钮,您的鼓励是博主写作最大的动力。


以上所述就是小编给大家介绍的《Spark Streaming--应用与实战(一)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

随意搜寻

随意搜寻

Peter Morville / 沈浩翔 / 华中科技大学出版社 / 2013-10-1 / CNY 68.00

在这个信息爆炸的年代,我们如何找到出路?在纷繁交错的信息流中,我们如何筛选出想要的信息?既然Google已经魔法般地将正确答案呈现在我们面前,为什么信息架构的方式依然重要? 《Web信息架构》的作者Peter Morville,用了10年时间回答以上问题。《随意搜寻》是 一趟奇妙的旅程,让未来触手可及:无论何时何地,我们都能找到任何人、任何东西。这本书即是路线图,也是信息时代的“玛雅预言”,......一起来看看 《随意搜寻》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

SHA 加密
SHA 加密

SHA 加密工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具