HBase原理-迟到的‘数据读取流程’部分细节

栏目: 数据库 · 发布时间: 8年前

内容简介:HBase原理-迟到的‘数据读取流程’部分细节

笔者去年年底分享了一篇关于HBase中数据读取(scan)逻辑的文章(戳 这里 ),主要介绍了scan的基本流程以及实现框架,看官反应甚是强烈。文章最后还挖了一个不大不小的坑,承诺后期会就部分细节进行深入分析,然而因为部分原因这个坑一直没填上。HBase-Scan的细节其实并不好讲,涉及太多代码层面的底层逻辑,大部分童鞋应该都不会太过关心。虽说如此,挖了的坑,含着泪也要填上,当然为了把坑填好,笔者将会使出洪荒之力将这些核心细节通过各种辅助化方式(示例、图解等)进行解读,方便读者理解。注:笔者能力有限、水平一般,如有不对还望指教。

简单地回顾一下scan的整个流程,如下图所示:


HBase原理-迟到的‘数据读取流程’部分细节

上图是一个简单的示意图,用户如果对整个流程比较感兴趣,可以阅读之前的文章,本文将会关注于隐藏在这个示意图中的核心细节。这里笔者挑出了其中五个比较重要的问题来说明,这些问题都是本人之前或早或晚比较困惑的问题,拿出来与大家分享。当然,如果大家有反馈想了解的其他细节,也可以单独交流探讨。

1. 常说HBase数据读取要读Memstore、HFile和Blockcache,为什么上面Scanner只有StoreFileScanner和MemstoreScanner两种?没有BlockcacheScanner?

HBase中数据仅仅独立地存在于Memstore和StoreFile中,Blockcache中的数据只是StoreFile中的部分数据(热点数据),即所有存在于Blockcache的数据必然存在于StoreFile中。因此MemstoreScanner和StoreFileScanner就可以覆盖到所有数据。实际读取时StoreFileScanner通过索引定位到待查找key所在的block之后,首先检查该block是否存在于Blockcache中,如果存在直接取出,如果不存在再到对应的StoreFile中读取。

2.  数据更新操作先将数据写入Memstore,再落盘。落盘之后需不需要更新Blockcache中对应的kv?如果不更新,会不会读到脏数据?

如果理清楚了第一个问题,相信很容易得出这个答案:不需要更新Blockcache中对应的kv,而且不会读到脏数据。数据写入Memstore落盘会形成新的文件,和Blockcache里面的数据是相互独立的,以多版本的方式存在。

3. 读取流程中如何使用BloomFilter(简称BF)对StoreFile进行过滤?

过滤StoreFile发生在上图中第三步,过滤手段主要有三种:根据KeyRange过滤、根据TimeRange过滤、根据BF过滤。下面分别进行介绍:

(1)根据KeyRange过滤:因为StoreFile是中所有KV数据都是有序排列的,所以如果待检索row范围[startrow,stoprow]与文件起始key范围[firstkey,lastkey]没有交集,比如stoprow < firstkey 或者 startrow > lastkey,就可以过滤掉该StoreFile。 

(2)根据TimeRange过滤:StoreFile中元数据有一个关于该File的TimeRange属性[minimumTimestamp, maxmumTimestamp],因此待检索的TimeRange如果与该文件时间范围没有交集,就可以过滤掉该StoreFile;另外,如果该文件所有数据已经过期,也可以过滤淘汰。

(3)根据BF过滤:BF在几乎所有的LSM模型存储领域都会用到,可说是标配,比如HBase、Kudu、RocksDB等等,用法也是如出一辙,和HBase一样,主要用来读取数据时过滤部分文件;除此之外,BF在大数据计算(分布式Join实现)中也扮演重要的角色,参考Impala中Hash Join的实现(戳 这里 )。BF的具体工作原理笔者假设童鞋都了解(不了解的童鞋可以参考上述链接文章)。

现在来看看HBase中如何利用BF对StoreFile进行过滤(注:接下来所有关于HBase BF的说明都按照Row类型来,Row-Column类型类似),原理其实很简单:首先把BF数据加载到内存;然后使用hash函数对待检索row进行hash,根据hash后的结果在BF数据中进行寻址查看即可确定是否存在该HFile。第二步就是BF的原理,并没有什么好讲的,主要来看看HBase是如何将BF数据加载到内存的。

看过笔者之前文章的童鞋都知道,BF数据实际上是和用户KV数据一样存储在HFile中的,那就需要先看看BF信息是如何存储在HFile中的,查看 官方文档 中HFile(v2)组织结构图如下:


HBase原理-迟到的‘数据读取流程’部分细节

HFile组织结构中关于BF有两个非常重要的结构-Bloom Block与Bloom Index。Bloom Block主要存储BF的实际数据,可能这会大家要问为什么Bloom Block要分布在整个HFile?分布的具体位置如何确定?其实很简单,HBase在写数据的时候就会根据row生成对应的BF信息并写到一个Block中,随着用户数据的不断写入,这个BF Block就会不断增大,当增大到一定阈值之后系统就会重新生成一个新Block,旧Block就会顺序加载到Data Block之后。这里隐含了一个关键的信息,随着单个文件的增大,BF信息会逐渐变的很大,并不适合一次性全部加载到内存,更适合的使用方式是使用哪块加载哪块!

这些Bloom Block分散在HFile中的各个角落,就会带来一个问题:如何有效快速定位到这些BF Block?这就是Bloom Index的核心作用,与Data Index相同,Bloom Index也是一颗B+树,Bloom Index Block结构如下图所示:


HBase原理-迟到的‘数据读取流程’部分细节

上图需要重点关注Bloom Block的Block Key:Block中第一个原始KV的RowKey。这样给定一个待检索的 rowkey,就可以很容易地通过Bloom Index定位到具体的Bloom Block,将Block加载到内存进行过滤。通常情况下,热点Bloom Block会常驻内存的!

到此为止,笔者已经解释清楚了HBase是如何利用BF在读取数据时根据rowkey过滤StoreFile的,相信Kudu、RocksDB中BF的原理基本相同。

再回到出发的地方,我们说在实际scan之前就要使用BF对StoreFile进行过滤,那仔细想下,到底用哪个rowkey过滤?实际实现中系统使用scan的startrow作为过滤条件进行过滤,这是不是有问题?举个简单的例子,假设小明检索的数据为[row1, row4],如果此文件不包含row1,而包含row2,这样在scan前你利用row1就把该文件淘汰掉了,row2这条数据怎么办?不是会被遗漏?

这里系统实现有个隐藏点,scan之前使用BF进行过滤只针对get查询以及scan单条数据的场景,scan多条数据并不会执行实际的BF过滤,而是在实际seek到新一行的时候才会启用BF根据新一行rowkey对所有StoreFile过滤。

4. 最小堆中弹出cell之后如何对该cell进行检查过滤,确保满足用户设置条件?检查过滤之后是继续弹出下一个cell,还是跳过部分cell重新seek到下一列或者下一行?

scan之所以复杂,很大程度上是因为scan可以设置的条件非常之多,下面所示代码为比较常规的一些设置:

Scan scan = new Scan();
scan.withStartRow(startRow) //设置检索起始row
        .withStopRow(stopRow) //设置检索结束row
        .setFamilyMap(Map<byte[], Set<byte[]> familyMap>) //设置检索的列族和对应列族下的列集合
        .setTimeRange(minStamp, maxStamp) // 设置检索TimeRange
        .setMaxVersions(maxVersions) //设置检索的最大版本号
        .setFilter(filter) //设置检索过滤器
        …

在整个Scan流程的第6步,将堆顶kv元素出堆进行检查,实际上主要检查两个方面,其一是非用户条件检查,比如kv是否已经过期(列族设置TTL)、kv是否已经被删除,这些检查和用户设置查询条件没有任何关系;其二就是检查该kv是否满足用户设置的这些查询条件,代码逻辑还是比较清晰的,在此不再赘述。核心代码主要参考ScanQueryMatcher.match(cell)方法。

相比堆顶元素检查流程,笔者更想探讨堆顶元素kv检查之后的返回值-MatchCode,这个Code可不简单,它会告诉scanner是继续seek下一个cell,还是直接跳过部分cell直接seek到下一列(对应INCLUDE_AND_SEEK_NEXT_COL或SEEK_NEXT_COL),抑或是直接seek到下一行(对应INCLUDE_AND_SEEK_NEXT_ROW或SEEK_NEXT_ROW)。还是举一个简单的例子:

HBase原理-迟到的‘数据读取流程’部分细节

上图是待查表,含有一个列族cf,列族下有四个列[c1, c2, c3, c4],列族设置MaxVersions为2,即允许最多存在2个版本。现在简单构造一个查询语句如下:

Scan scan = new Scan(r1, r4); // 表示检索范围为[r1, r4]
scan.setFamilyMap(Map<cf, Set<c1,c2>>) //仅检索列族cf下的c1列和c2列
        .setMaxVersions(1) //设置检索的最大版本号为1

下面分别模拟直接跳过部分纪录seek到下一列(INCLUDE_AND_SEEK_NEXT_COL)的场景以及跳过部分列直接seek到下一行(INCLUDE_AND_SEEK_NEXT_ROW)的场景:

(1)假设当前检索r1行,堆顶元素为cf:c1下的kv1(版本为v1),按照设置条件中检索的最大版本号为1,其他条件都满足的情况下就可以直接跳过kv2直接seek到下一列-c2列。这种场景下就会返回INCLUDE_AND_SEEK_NEXT_COL。

(2)假设当前检索r1行,堆顶元素为cf:c2下的kv3(仅有1个版本),满足设置的版本条件,系统检测到c2是检索的最后一列之后(c3、c4并不需要检索),就会返回指示-略过c3、c4直接seek到下一行。这种场景下就会返回INCLUDE_AND_SEEK_NEXT_ROW。

至此,笔者针对scan流程中的第6步进行了比较详细的解读,对认为比较重要的点进行了简单演示。其实还是有很多内容,但大多都大同小异,原理类似。有兴趣读HBase源码的同学可以参考这里的解读,相信会有所帮助。

5. 每次seek(key)命令是不是都需要所有scanner真正seek到指定key?延迟seek是如何优化读性能的?

这是本文探讨的最后一个话题,严格来说,这个话题并不涉及scan的流程,而仅仅是对scan的一项优化。但是个人认为理解这项优化对scan的流程理解有着相当重要的意义,同时也是阅读HBase-Scan模块源码必须要迈过的一道坎。

先回到scan的流程,根据之前的理解,如果堆顶元素出堆检查之后指示scanner需要跳过部分cell直接seek到下一列或者下一行,此时所有scanner都需要按照指示执行seek命令定位指定位置,这本身没有毛病。然而这可能并不高效,试想这么一种场景:

(1)当前有3个StoreFile文件,因此对应3个StoreFileScanner,现在接到指示需要seek 到(rowk, cf:c1)位置,刚好这三个文件中都存在这样的KV,差别在于时间戳不同

(2)于是这3个Scanner很顺从地在文件中找到指定位置,然后等待最小KV出堆接受检查

(3)最小KV出堆接受检查之后满足用户条件,而且用户只需要检索最新版本。因此检查之后告诉所有scanner直接seek到下一行。

有没有发现一些小小的问题?没错,3个scanner只有1个scanner做了’有用功’,其他两个scanner都做了’无用seek’。这很显然一定程度上会影响scan性能。

HBase提出了一个很巧妙的应对方案-延迟seek,就是3个scanner接到seek指示的时候,实际上并没有真正去做,而只是将scanner的指针指向指定位置。那童鞋就会问了,那什么时候真正去seek呢?只需要在堆顶元素弹出来的时候真正去执行就可以。这样,就可以有效避免大量’无用seek’。

好了,本文核心内容就基本介绍完了,接下来扯点闲篇。任何存储系统的核心模块无非读写模块,但不同类型的数据库侧重不同。MySQL类系统(Oracle、SQLServer等)侧重于写,写就是它的灵魂!为了实现事务原子性,数据更新之前要先写undo log,为了实现数据持久性,又引入redo log,为了实现事务隔离性,还需要实现各种锁,还有类似double write等一系列机制…… ,个人认为,搞懂了数据更新写入流程基本就搞懂了 MySQL 存储引擎。与MySQL相对,HBase类系统(RocksDB、Kudu )更侧重读,读是它的灵魂!HBase将所有更新操作、删除操作都简单的当作写入操作来处理,对于更新删除来说确实简单了,但却给数据读取带来了极大的负担,数据读取的时候需要额外过滤删除数据、处理多版本数据,除此之外,LSM所特有的多文件存储、BloomFilter过滤特性支持等等无不增加了数据读取的难度。个人认为,只有搞懂了数据读取才可能真正理解HBase内核。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

机器学习

机器学习

周志华 / 清华大学出版社 / 2016-1-1 / 88.00元

机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一......一起来看看 《机器学习》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具