内容简介:用 Machine Learning 調校資料庫
AWS AI Blog 在月初上放出來的消息:「 Tuning Your DBMS Automatically with Machine Learning 」。
Carnegie Mellon Database Group 做的研究,除了預設值以外,另外跟四種不同的參數做比較,分別是 OtterTune (也就是這次的研究)、Tuning script (對於不熟資料庫的人,常用的 open source 工具)、DBA 手動調整,以及 RDS :
MySQL :
比較明顯的結論是:
- Default 值在所有的 case 下都是最差的 (無論是 MySQL 與 PostgreSQL 平台,以及包括 99% 的 Latency 與 QPS,這樣二乘二的四個結果)。而且 Default 跑出來的數字與其他的差距都很明顯。
- OtterTune 在所有 case 下跑出來都比 Tuning script 的好。這也是合理的結果,本來就是想要取代其他機器跑出來的結果。
至於有些討論 DBA 會失業的事情,我是樂見其成啦... 這些繁瑣的事情可以自動化就想交給自動化吧 XD
以上所述就是小编给大家介绍的《用 Machine Learning 調校資料庫》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Servlet与JSP核心编程
[美]Marty Hall、Larry Brown、Yaakov Chalkin / 胡书敏 / 2009-6 / 68.00元
《Servlet与JSP核心编程(第2卷 第2版)》在第l卷的基础上,广泛涉及自定义标签库、过滤器、声明式安全、JSTL和Struts等主题,并沿袭深受读者喜爱的写作风格,通过完整、有效、资料丰富的程序来演绎目前最流行的技术和最佳实践。Java EE已经成为电子商务网站、动态网站和Web应用与服务开发的首选,作为这一平台的基础,servlet与JSP的重要性日益突出,并在极短的时间内得以迅速普及。......一起来看看 《Servlet与JSP核心编程》 这本书的介绍吧!