内容简介:版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。
版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。
1 Numpy详细使用
-
读取txt文件
import numpy world_alcohol = numpy.genfromtxt("world_alcohol.txt", delimiter=",") print(type(world_alcohol)) world_alcohol = numpy.genfromtxt("world_alcohol.txt", delimiter=",", dtype="U75", skip_header=1) print(world_alcohol) [[u'1986' u'Western Pacific' u'Viet Nam' u'Wine' u'0'] [u'1986' u'Americas' u'Uruguay' u'Other' u'0.5'] [u'1985' u'Africa' u"Cte d'Ivoire" u'Wine' u'1.62'] ..., [u'1987' u'Africa' u'Malawi' u'Other' u'0.75'] [u'1989' u'Americas' u'Bahamas' u'Wine' u'1.5'] [u'1985' u'Africa' u'Malawi' u'Spirits' u'0.31']] 复制代码
-
创建一维和二维的Array数组
#The numpy.array() function can take a list or list of lists as input. When we input a list, we get a one-dimensional array as a result: #一维的Array数组[] vector = numpy.array([5, 10, 15, 20]) #二维的Array数组[[],[],[]] matrix = numpy.array([[5, 10, 15], [20, 25, 30], [35, 40, 45]]) print vector print matrix 复制代码
-
shape用法
#We can use the ndarray.shape property to figure out how many elements are in the array vector = numpy.array([1, 2, 3, 4]) print(vector.shape) #For matrices, the shape property contains a tuple with 2 elements. matrix = numpy.array([[5, 10, 15], [20, 25, 30]]) print(matrix.shape) (4,) (2, 3) 复制代码
-
dtype用法(numpy要求numpy.array内部元素结构相同)
numbers = numpy.array([1, 2, 3, 4]) numbers.dtype dtype('int32') #改变其中一个值时,其他值都会改变 numbers = numpy.array([1, 2, 3, '4']) print(numbers) numbers.dtype ['1' '2' '3' '4'] dtype('<U11') 复制代码
-
索引定位
[[u'1986' u'Western Pacific' u'Viet Nam' u'Wine' u'0'] [u'1986' u'Americas' u'Uruguay' u'Other' u'0.5'] [u'1985' u'Africa' u"Cte d'Ivoire" u'Wine' u'1.62'] ..., [u'1987' u'Africa' u'Malawi' u'Other' u'0.75'] [u'1989' u'Americas' u'Bahamas' u'Wine' u'1.5'] [u'1985' u'Africa' u'Malawi' u'Spirits' u'0.31']] uruguay_other_1986 = world_alcohol[1,4] third_country = world_alcohol[2,2] print uruguay_other_1986 print third_country 0.5 Cte d'Ivoire 复制代码
-
索引切片
vector = numpy.array([5, 10, 15, 20]) print(vector[0:3]) [ 5 10 15] 复制代码
-
取某一列(:表示所有行)
matrix = numpy.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) print(matrix[:,1]) [10 25 40] matrix = numpy.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) print(matrix[:,0:2]) [[ 5 10] [20 25] [35 40]] matrix = numpy.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) print(matrix[1:3,0:2]) [[20 25] [35 40]] 复制代码
-
对Array操作表示对内部所有元素进行操作
import numpy #it will compare the second value to each element in the vector # If the values are equal, the Python interpreter returns True; otherwise, it returns False vector = numpy.array([5, 10, 15, 20]) vector == 10 array([False, True, False, False], dtype=bool) matrix = numpy.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) matrix == 25 array([[False, False, False], [False, True, False], [False, False, False]], dtype=bool) 复制代码
-
布尔值当索引([False True False False])
vector = numpy.array([5, 10, 15, 20]) equal_to_ten = (vector == 10) print equal_to_ten print(vector[equal_to_ten]) [False True False False] [10] #矩阵表示索引 matrix = numpy.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) second_column_25 = (matrix[:,1] == 25) print second_column_25 print(matrix[second_column_25, :]) [False True False] [[20 25 30]] 复制代码
-
对数组进行与运算
#We can also perform comparisons with multiple conditions vector = numpy.array([5, 10, 15, 20]) equal_to_ten_and_five = (vector == 10) & (vector == 5) print equal_to_ten_and_five [False False False False] vector = numpy.array([5, 10, 15, 20]) equal_to_ten_or_five = (vector == 10) | (vector == 5) print equal_to_ten_or_five [ True True False False] 复制代码
-
值类型转换
vector = numpy.array(["1", "2", "3"]) print vector.dtype print vector vector = vector.astype(float) print vector.dtype print vector |S1 ['1' '2' '3'] float64 [ 1. 2. 3.] 复制代码
-
聚合求解
vector = numpy.array([5, 10, 15, 20]) vector.sum() 复制代码
-
按行维度(axis=1)
matrix = numpy.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) matrix.sum(axis=1) array([ 30, 75, 120]) 复制代码
-
按列求和(axis=0)
matrix = numpy.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) matrix.sum(axis=0) 复制代码
-
矩阵操作np.arange生成0-N的整数
import numpy as np a = np.arange(15).reshape(3, 5) a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) a.ndim 2 a.dtype.name 'int32' a.size 15 复制代码
-
矩阵初始化
np.zeros ((3,4)) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) np.ones( (2,3,4), dtype=np.int32 ) array([[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]) 复制代码
-
按照间隔生成数据
np.arange( 10, 30, 5 ) array([10, 15, 20, 25]) np.arange( 0, 2, 0.3 ) array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]) 复制代码
-
随机生成数据
np.random.random((2,3)) array([[ 0.40130659, 0.45452825, 0.79776512], [ 0.63220592, 0.74591134, 0.64130737]]) 复制代码
-
linspace在0到2pi之间取100个数
from numpy import pi np.linspace( 0, 2*pi, 100 ) array([ 0. , 0.06346652, 0.12693304, 0.19039955, 0.25386607, 0.31733259, 0.38079911, 0.44426563, 0.50773215, 0.57119866, 0.63466518, 0.6981317 , 0.76159822, 0.82506474, 0.88853126, 0.95199777, 1.01546429, 1.07893081, 1.14239733, 1.20586385, 1.26933037, 1.33279688, 1.3962634 , 1.45972992, 1.52319644, 1.58666296, 1.65012947, 1.71359599, 1.77706251, 1.84052903, 1.90399555, 1.96746207, 2.03092858, 2.0943951 , 2.15786162, 2.22132814, 2.28479466, 2.34826118, 2.41172769, 2.47519421, 2.53866073, 2.60212725, 2.66559377, 2.72906028, 2.7925268 , 2.85599332, 2.91945984, 2.98292636, 3.04639288, 3.10985939, 3.17332591, 3.23679243, 3.30025895, 3.36372547, 3.42719199, 3.4906585 , 3.55412502, 3.61759154, 3.68105806, 3.74452458, 3.8079911 , 3.87145761, 3.93492413, 3.99839065, 4.06185717, 4.12532369, 4.1887902 , 4.25225672, 4.31572324, 4.37918976, 4.44265628, 4.5061228 , 4.56958931, 4.63305583, 4.69652235, 4.75998887, 4.82345539, 4.88692191, 4.95038842, 5.01385494, 5.07732146, 5.14078798, 5.2042545 , 5.26772102, 5.33118753, 5.39465405, 5.45812057, 5.52158709, 5.58505361, 5.64852012, 5.71198664, 5.77545316, 5.83891968, 5.9023862 , 5.96585272, 6.02931923, 6.09278575, 6.15625227, 6.21971879, 6.28318531]) 复制代码
-
矩阵基本操作
#the product operator * operates elementwise in NumPy arrays a = np.array( [20,30,40,50] ) b = np.arange( 4 ) print (a) print (b) #b c = a-b print (c) b**2 print (b**2) print (a<35) [20 30 40 50] [0 1 2 3] [20 29 38 47] [ True True False False] 复制代码
-
矩阵相乘
#The matrix product can be performed using the dot function or method A = np.array([[1,1], [0,1]] ) B = np.array([[2,0], [3,4]]) print (A) print (B) print (A*B) print (A.dot(B)) print (np.dot(A, B) ) [[1 1] [0 1]] [[2 0] [3 4]] [[2 0] [0 4]] [[5 4] [3 4]] [[5 4] [3 4]] 复制代码
-
矩阵操作floor向下取整
import numpy as np B = np.arange(3) print (B) #print np.exp(B) print (np.sqrt(B)) [0 1 2] [0. 1. 1.41421356] #Return the floor of the input a = np.floor(10*np.random.random((3,4))) #print a #Return the floor of the input a = np.floor(10*np.random.random((3,4))) print (a) print(a.reshape(2,-1)) [[0. 4. 2. 2.] [8. 1. 5. 7.] [0. 9. 7. 4.]] [[0. 4. 2. 2. 8. 1.] [5. 7. 0. 9. 7. 4.]] 复制代码
-
hstack矩阵拼接
a = np.floor(10*np.random.random((2,2))) b = np.floor(10*np.random.random((2,2))) print a print '---' print b print '---' print np.hstack((a,b)) [[ 5. 6.] [ 1. 5.]] --- [[ 8. 6.] [ 9. 0.]] --- [[ 5. 6. 8. 6.] [ 1. 5. 9. 0.]] a = np.floor(10*np.random.random((2,2))) b = np.floor(10*np.random.random((2,2))) print (a) print ('---') print (b) print ('---') #print np.hstack((a,b)) np.vstack((a,b)) [[7. 7.] [2. 6.]] --- [[0. 6.] [0. 3.]] --- array([[1., 0.], [3., 6.], [4., 2.], [8., 7.]]) a = np.floor(10*np.random.random((2,12))) print (a) print (np.hsplit(a,3)) [[6. 5. 2. 4. 2. 4. 9. 4. 4. 6. 8. 9.] [8. 4. 0. 2. 6. 5. 2. 5. 0. 4. 1. 6.]] [array([[6., 5., 2., 4.], [8., 4., 0., 2.]]), array([[2., 4., 9., 4.], [6., 5., 2., 5.]]), array([[4., 6., 8., 9.], [0., 4., 1., 6.]])] 复制代码
-
任意选择切分位置
print ( np.hsplit(a,(3,4))) # Split a after the third and the fourth column [[2. 8. 4. 7. 6. 6. 5. 8. 8. 3. 0. 1.] [3. 5. 9. 4. 5. 8. 7. 6. 2. 3. 8. 4.]] [array([[2., 8., 4.], [3., 5., 9.]]), array([[7.], [4.]]), array([[6., 6., 5., 8., 8., 3., 0., 1.], [5., 8., 7., 6., 2., 3., 8., 4.]])] 复制代码
-
变量赋值
-
变量视图
-
copy实现变量之间没有关系
d = a.copy() d is a d[0,0] = 9999 print d print a [[9999 1 2 3] [1234 5 6 7] [ 8 9 10 11]] [[ 0 1 2 3] [1234 5 6 7] [ 8 9 10 11]] 复制代码
-
寻找列最大值索引
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- python数据分析于实现,单样本体检验、独立样本体检验、相关分析、列联表分析!
- 鬼影样本分析
- 恶意样本分析手册——文件封装篇
- 利用ngrok传播样本挖矿
- 对某HWP漏洞样本的分析
- GandCrab 5.1样本详细分析
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
个性化网页设计与鉴赏
梁景红 / 西安电子科技大学出版社 / 2003-07-14 / 22.00
本书比较全面地介绍了网页设计应注意的相关问题, 在网页设计基础方面着重讲解了网页框架、页面元素、色彩设计,分析了一些人们容易忽视的细小环节,如页面装饰物、图片、文字、连接等。书中结合实例分析了优秀网页的设计创意思想,可以给读者提供一些启示。书中还介绍了作为网页设计者需要了解的信息管理和技术应用,以及网站VI设计和视觉美学等必要知识,读者可针对各种类别的站点具体实践这些知识,寻找进行网页设计的切入点......一起来看看 《个性化网页设计与鉴赏》 这本书的介绍吧!
html转js在线工具
html转js在线工具
RGB CMYK 转换工具
RGB CMYK 互转工具