时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战

栏目: R语言 · 发布时间: 5年前

内容简介:版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。

1 数据的预处理

  • 时间序列数据生成

    import pandas as pd
      import numpy as np
      
      
      date_range:
      可以指定开始时间与周期
      H:小时
      D:天
      M:月
      
      # TIMES #2016 Jul 1 7/1/2016 1/7/2016 2016-07-01 2016/07/01
      rng = pd.date_range('2016-07-01', periods = 10, freq = '3D')
      rng
      
      DatetimeIndex(['2016-07-01', '2016-07-04', '2016-07-07', '2016-07-10',
             '2016-07-13', '2016-07-16', '2016-07-19', '2016-07-22',
             '2016-07-25', '2016-07-28'],
            dtype='datetime64[ns]', freq='3D')
            
    
       time=pd.Series(np.random.randn(20),
             index=pd.date_range(dt.datetime(2016,1,1),periods=20))
       print(time)
       
      2016-01-01   -0.129379
      2016-01-02    0.164480
      2016-01-03   -0.639117
      2016-01-04   -0.427224
      2016-01-05    2.055133
      2016-01-06    1.116075
      2016-01-07    0.357426
      2016-01-08    0.274249
      2016-01-09    0.834405
      2016-01-10   -0.005444
      2016-01-11   -0.134409
      2016-01-12    0.249318
      2016-01-13   -0.297842
      2016-01-14   -0.128514
      2016-01-15    0.063690
      2016-01-16   -2.246031
      2016-01-17    0.359552
      2016-01-18    0.383030
      2016-01-19    0.402717
      2016-01-20   -0.694068
      Freq: D, dtype: float64
    复制代码
  • truncate过滤

    time.truncate(before='2016-1-10')
      2016-01-10   -0.005444
      2016-01-11   -0.134409
      2016-01-12    0.249318
      2016-01-13   -0.297842
      2016-01-14   -0.128514
      2016-01-15    0.063690
      2016-01-16   -2.246031
      2016-01-17    0.359552
      2016-01-18    0.383030
      2016-01-19    0.402717
      2016-01-20   -0.694068
      Freq: D, dtype: float64
      
      time.truncate(after='2016-1-10')
      2016-01-01   -0.129379
      2016-01-02    0.164480
      2016-01-03   -0.639117
      2016-01-04   -0.427224
      2016-01-05    2.055133
      2016-01-06    1.116075
      2016-01-07    0.357426
      2016-01-08    0.274249
      2016-01-09    0.834405
      2016-01-10   -0.005444
      Freq: D, dtype: float64
      
      print(time['2016-01-15':'2016-01-20'])
      2016-01-15    0.063690
      2016-01-16   -2.246031
      2016-01-17    0.359552
      2016-01-18    0.383030
      2016-01-19    0.402717
      2016-01-20   -0.694068
      Freq: D, dtype: float64
      
      data=pd.date_range('2010-01-01','2011-01-01',freq='M')
      print(data)
      
      DatetimeIndex(['2010-01-31', '2010-02-28', '2010-03-31', '2010-04-30',
             '2010-05-31', '2010-06-30', '2010-07-31', '2010-08-31',
             '2010-09-30', '2010-10-31', '2010-11-30', '2010-12-31'],
            dtype='datetime64[ns]', freq='M')
            
            
      # 指定索引
      rng = pd.date_range('2016 Jul 1', periods = 10, freq = 'D')
      rng
      pd.Series(range(len(rng)), index = rng)
      
      2016-07-01    0
      2016-07-02    1
      2016-07-03    2
      2016-07-04    3
      2016-07-05    4
      2016-07-06    5
      2016-07-07    6
      2016-07-08    7
      2016-07-09    8
      2016-07-10    9
      Freq: D, dtype: int32
    复制代码
  • 指定索引

    periods = [pd.Period('2016-01'), pd.Period('2016-02'), pd.Period('2016-03')]
      ts = pd.Series(np.random.randn(len(periods)), index = periods)
      ts
      
      2016-07-01    0
      2016-07-02    1
      2016-07-03    2
      2016-07-04    3
      2016-07-05    4
      2016-07-06    5
      2016-07-07    6
      2016-07-08    7
      2016-07-09    8
      2016-07-10    9
      Freq: D, dtype: int32
    复制代码
  • 时间戳和时间周期可以转换

    ts = pd.Series(range(10), pd.date_range('07-10-16 8:00', periods = 10, freq = 'H'))
      ts
      
      2016-07-10 08:00:00    0
      2016-07-10 09:00:00    1
      2016-07-10 10:00:00    2
      2016-07-10 11:00:00    3
      2016-07-10 12:00:00    4
      2016-07-10 13:00:00    5
      2016-07-10 14:00:00    6
      2016-07-10 15:00:00    7
      2016-07-10 16:00:00    8
      2016-07-10 17:00:00    9
      Freq: H, dtype: int32
    
      ts_period = ts.to_period()
      ts_period
      
      2016-07-10 08:00    0
      2016-07-10 09:00    1
      2016-07-10 10:00    2
      2016-07-10 11:00    3
      2016-07-10 12:00    4
      2016-07-10 13:00    5
      2016-07-10 14:00    6
      2016-07-10 15:00    7
      2016-07-10 16:00    8
      2016-07-10 17:00    9
      Freq: H, dtype: int32
      
      ts_period['2016-07-10 08:30':'2016-07-10 11:45']
      
      2016-07-10 08:00    0
      2016-07-10 09:00    1
      2016-07-10 10:00    2
      2016-07-10 11:00    3
      Freq: H, dtype: int32
      
      ts['2016-07-10 08:30':'2016-07-10 11:45']
      
      2016-07-10 09:00:00    1
      2016-07-10 10:00:00    2
      2016-07-10 11:00:00    3
      Freq: H, dtype: int32
    复制代码

2 数据重采样

  • 时间数据由一个频率转换到另一个频率

  • 降采样

  • 升采样

    rng = pd.date_range('1/1/2011', periods=90, freq='D')
      ts = pd.Series(np.random.randn(len(rng)), index=rng)
      ts.head()
      
      2011-01-01   -1.025562
      2011-01-02    0.410895
      2011-01-03    0.660311
      2011-01-04    0.710293
      2011-01-05    0.444985
      Freq: D, dtype: float64
      
      ts.resample('M').sum()
      
      2011-01-31    2.510102
      2011-02-28    0.583209
      2011-03-31    2.749411
      Freq: M, dtype: float64
      
      ts.resample('3D').sum()
      
      2011-01-01    0.045643
      2011-01-04   -2.255206
      2011-01-07    0.571142
      2011-01-10    0.835032
      2011-01-13   -0.396766
      2011-01-16   -1.156253
      2011-01-19   -1.286884
      2011-01-22    2.883952
      2011-01-25    1.566908
      2011-01-28    1.435563
      2011-01-31    0.311565
      2011-02-03   -2.541235
      2011-02-06    0.317075
      2011-02-09    1.598877
      2011-02-12   -1.950509
      2011-02-15    2.928312
      2011-02-18   -0.733715
      2011-02-21    1.674817
      2011-02-24   -2.078872
      2011-02-27    2.172320
      2011-03-02   -2.022104
      2011-03-05   -0.070356
      2011-03-08    1.276671
      2011-03-11   -2.835132
      2011-03-14   -1.384113
      2011-03-17    1.517565
      2011-03-20   -0.550406
      2011-03-23    0.773430
      2011-03-26    2.244319
      2011-03-29    2.951082
      Freq: 3D, dtype: float64
    
      day3Ts = ts.resample('3D').mean()
      day3Ts
      
      2011-01-01    0.015214
      2011-01-04   -0.751735
      2011-01-07    0.190381
      2011-01-10    0.278344
      2011-01-13   -0.132255
      2011-01-16   -0.385418
      2011-01-19   -0.428961
      2011-01-22    0.961317
      2011-01-25    0.522303
      2011-01-28    0.478521
      2011-01-31    0.103855
      2011-02-03   -0.847078
      2011-02-06    0.105692
      2011-02-09    0.532959
      2011-02-12   -0.650170
      2011-02-15    0.976104
      2011-02-18   -0.244572
      2011-02-21    0.558272
      2011-02-24   -0.692957
      2011-02-27    0.724107
      2011-03-02   -0.674035
      2011-03-05   -0.023452
      2011-03-08    0.425557
      2011-03-11   -0.945044
      2011-03-14   -0.461371
      2011-03-17    0.505855
      2011-03-20   -0.183469
      2011-03-23    0.257810
      2011-03-26    0.748106
      2011-03-29    0.983694
      Freq: 3D, dtype: float64
      
      ## 下采样
      print(day3Ts.resample('D').asfreq())
      
      2011-01-01    0.015214
      2011-01-02         NaN
      2011-01-03         NaN
      2011-01-04   -0.751735
      2011-01-05         NaN
      2011-01-06         NaN
      2011-01-07    0.190381
      2011-01-08         NaN
      2011-01-09         NaN
      2011-01-10    0.278344
      2011-01-11         NaN
      2011-01-12         NaN
      2011-01-13   -0.132255
      2011-01-14         NaN
      2011-01-15         NaN
      2011-01-16   -0.385418
      2011-01-17         NaN
      2011-01-18         NaN
      2011-01-19   -0.428961
      2011-01-20         NaN
      2011-01-21         NaN
      2011-01-22    0.961317
      Freq: D, Length: 88, dtype: float64
    复制代码
  • ffill 空值取前面的值

  • bfill 空值取后面的值

  • interpolate 线性取值

    day3Ts.resample('D').ffill(1)
     
      2011-01-01    0.015214
      2011-01-02    0.015214
      2011-01-03         NaN
      2011-01-04   -0.751735
      2011-01-05   -0.751735
      2011-01-06         NaN
      2011-01-07    0.190381
      2011-01-08    0.190381
      2011-01-09         NaN
      2011-01-10    0.278344
      2011-01-11    0.278344
      
      day3Ts.resample('D').bfill(1)
      2011-01-01    0.015214
      2011-01-02         NaN
      2011-01-03   -0.751735
      2011-01-04   -0.751735
      2011-01-05         NaN
      2011-01-06    0.190381
      2011-01-07    0.190381
      2011-01-08         NaN
      2011-01-09    0.278344
      2011-01-10    0.278344
      2011-01-11         NaN
      2011-01-12   -0.132255
      2011-01-13   -0.132255
    
     day3Ts.resample('D').interpolate('linear')
     2011-01-01    0.015214
      2011-01-02   -0.240435
      2011-01-03   -0.496085
      2011-01-04   -0.751735
      2011-01-05   -0.437697
      2011-01-06   -0.123658
      2011-01-07    0.190381
      2011-01-08    0.219702
      2011-01-09    0.249023
      2011-01-10    0.278344
      2011-01-11    0.141478
      2011-01-12    0.004611
      2011-01-13   -0.132255
      2011-01-14   -0.216643
      2011-01-15   -0.301030
    复制代码

3 滑动窗

  • 滑动窗计算

    %matplotlib inline 
      import matplotlib.pylab
      import numpy as np
      import pandas as pd
      
      df = pd.Series(np.random.randn(600), index = pd.date_range('7/1/2016', freq = 'D', periods = 600))
      df.head()
      
      2016-07-01   -0.192140
      2016-07-02    0.357953
      2016-07-03   -0.201847
      2016-07-04   -0.372230
      2016-07-05    1.414753
      Freq: D, dtype: float64
    
      r = df.rolling(window = 10)
      #r.max, r.median, r.std, r.skew, r.sum, r.var
      print(r.mean())
      
      016-07-01         NaN
      2016-07-02         NaN
      2016-07-03         NaN
      2016-07-04         NaN
      2016-07-05         NaN
      2016-07-06         NaN
      2016-07-07         NaN
      2016-07-08         NaN
      2016-07-09         NaN
      2016-07-10    0.300133
      2016-07-11    0.284780
      2016-07-12    0.252831
      2016-07-13    0.220699
      2016-07-14    0.167137
      2016-07-15    0.018593
      2016-07-16   -0.061414
      2016-07-17   -0.134593
      2016-07-18   -0.153333
      2016-07-19   -0.218928
      2016-07-20   -0.169426
      2016-07-21   -0.219747
      2016-07-22   -0.181266
      2016-07-23   -0.173674
      2016-07-24   -0.130629
      2016-07-25   -0.166730
      2016-07-26   -0.233044
      2016-07-27   -0.256642
      2016-07-28   -0.280738
      2016-07-29   -0.289893
      2016-07-30   -0.379625
                      ...   
      2018-01-22   -0.211467
      2018-01-23    0.034996
      2018-01-24   -0.105910
      2018-01-25   -0.145774
      2018-01-26   -0.089320
      2018-01-27   -0.164370
      2018-01-28   -0.110892
      2018-01-29   -0.205786
      2018-01-30   -0.101162
      2018-01-31   -0.034760
      2018-02-01    0.229333
      2018-02-02    0.043741
      2018-02-03    0.052837
      2018-02-04    0.057746
      2018-02-05   -0.071401
      2018-02-06   -0.011153
      2018-02-07   -0.045737
      2018-02-08   -0.021983
      2018-02-09   -0.196715
      2018-02-10   -0.063721
      2018-02-11   -0.289452
      2018-02-12   -0.050946
      2018-02-13   -0.047014
      2018-02-14    0.048754
      2018-02-15    0.143949
      2018-02-16    0.424823
      2018-02-17    0.361878
      2018-02-18    0.363235
      2018-02-19    0.517436
      2018-02-20    0.368020
      Freq: D, Length: 600, dtype: float64
    复制代码
  • 可视化

    import matplotlib.pyplot as plt
      %matplotlib inline
      
      plt.figure(figsize=(15, 5))
      
      df.plot(style='r--')
      df.rolling(window=10).mean().plot(style='b')
    复制代码
时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战

4 ARIMA预测

时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战
  • 数据的预处理

    import pandas_datareader
      import datetime
      import matplotlib.pylab as plt
      import seaborn as sns
      from matplotlib.pylab import style
      from statsmodels.tsa.arima_model import ARIMA
      from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
      
      style.use('ggplot')    
      plt.rcParams['font.sans-serif'] = ['SimHei'] 
      plt.rcParams['axes.unicode_minus'] = False  
      stockFile = 'data/T10yr.csv'
      stock = pd.read_csv(stockFile, index_col=0, parse_dates=[0])
      stock.head(10)
    复制代码
时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战
stock_week = stock['Close'].resample('W-MON').mean()
    stock_train = stock_week['2000':'2015'] 
    stock_train.plot(figsize=(12,8))
    plt.legend(bbox_to_anchor=(1.25, 0.5))
    plt.title("Stock Close")
    sns.despine()
复制代码
时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战
stock_diff = stock_train.diff()
    stock_diff = stock_diff.dropna()
    
    plt.figure()
    plt.plot(stock_diff)
    plt.title('一阶差分')
    plt.show()
复制代码
时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战
acf = plot_acf(stock_diff, lags=20)
plt.title("ACF")
acf.show()
复制代码
时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战
pacf = plot_pacf(stock_diff, lags=20)
    plt.title("PACF")
    pacf.show()
复制代码
时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战
model = ARIMA(stock_train, order=(1, 1, 1),freq='W-MON')
    result = model.fit()
    #print(result.summary())
    pred = result.predict('20140609', '20160701',dynamic=True, typ='levels')
    print (pred)
    
    2014-06-09    2.463559
    2014-06-16    2.455539
    2014-06-23    2.449569
    2014-06-30    2.444183
    2014-07-07    2.438962
    2014-07-14    2.433788
    2014-07-21    2.428627
    2014-07-28    2.423470
    2014-08-04    2.418315
    2014-08-11    2.413159
    2014-08-18    2.408004
    2014-08-25    2.402849
    2014-09-01    2.397693
    2014-09-08    2.392538
    2014-09-15    2.387383
    
    plt.figure(figsize=(6, 6))
    plt.xticks(rotation=45)
    plt.plot(pred)
    plt.plot(stock_train)
复制代码
时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战

以上所述就是小编给大家介绍的《时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法竞赛入门经典

算法竞赛入门经典

刘汝佳 / 清华大学出版社 / 2009-11 / 24.00元

《算法竞赛入门经典》是一本算法竞赛的入门教材,把C/C++语言、算法和解题有机地结合在了一起,淡化理论,注重学习方法和实践技巧。全书内容分为11章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、基础题目选解、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法,覆盖了算法竞赛入门所需的主要知识点,并附有大量习题。书中的代码规范、简洁、易懂,不仅能帮助......一起来看看 《算法竞赛入门经典》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

SHA 加密
SHA 加密

SHA 加密工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器