TensorFlow基础及MNIST数据集逻辑回归应用实践-大数据ML样本集案例实战

栏目: 数据库 · 发布时间: 6年前

内容简介:版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。

TensorFlow基本使用操作

  • TensorFlow基本模型

    import tensorflow as tf
      a = 3
      # Create a variable.
      w = tf.Variable([[0.5,1.0]])
      x = tf.Variable([[2.0],[1.0]]) 
      
      y = tf.matmul(w, x)  
      
      #variables have to be explicitly initialized before you can run Ops
      init_op = tf.global_variables_initializer()
      with tf.Session() as sess:
          sess.run(init_op)
          print (y.eval())
    复制代码
  • TensorFlow基本数据类型

    # float32
      tf.zeros([3, 4], int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
      
      # 'tensor' is [[1, 2, 3], [4, 5, 6]]
      tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]
      tf.ones([2, 3], int32) ==> [[1, 1, 1], [1, 1, 1]]
      
      # 'tensor' is [[1, 2, 3], [4, 5, 6]]
      tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]
      
      # Constant 1-D Tensor populated with value list.
      tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7]
      
      # Constant 2-D tensor populated with scalar value -1.
      tensor = tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.]
                                                    [-1. -1. -1.]]
      
      tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0  11.0  12.0]
      
      # 'start' is 3
      # 'limit' is 18
      # 'delta' is 3
      tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]
    复制代码
  • random_shuffle算子及random_normal算子

    norm = tf.random_normal([2, 3], mean=-1, stddev=4)
      
      # Shuffle the first dimension of a tensor
      c = tf.constant([[1, 2], [3, 4], [5, 6]])
      shuff = tf.random_shuffle(c)
      
      # Each time we run these ops, different results are generated
      sess = tf.Session()
      print (sess.run(norm))
      print (sess.run(shuff))
      
      [[-0.30886292  3.11809683  3.29861784]
       [-7.09597015 -1.89811802  1.75282788]]
      
      [[3 4]
       [5 6]
       [1 2]]
    复制代码
  • 简单操作的复杂性

    state = tf.Variable(0)
      new_value = tf.add(state, tf.constant(1))
      update = tf.assign(state, new_value)
      
      with tf.Session() as sess:
          sess.run(tf.global_variables_initializer())
          print(sess.run(state))    
          for _ in range(3):
              sess.run(update)
              print(sess.run(state))
    复制代码
  • 模型的保存与加载

    #tf.train.Saver
      w = tf.Variable([[0.5,1.0]])
      x = tf.Variable([[2.0],[1.0]])
      y = tf.matmul(w, x)
      init_op = tf.global_variables_initializer()
      saver = tf.train.Saver()
      with tf.Session() as sess:
          sess.run(init_op)
      # Do some work with the model.
      # Save the variables to disk.
          save_path = saver.save(sess, "C://tensorflow//model//test")
          print ("Model saved in file: ", save_path)
    复制代码
  • numpy与TensorFlow互转

    import numpy as np
      a = np.zeros((3,3))
      ta = tf.convert_to_tensor(a)
      with tf.Session() as sess:
           print(sess.run(ta))
    复制代码
  • TensorFlow占坑操作

    input1 = tf.placeholder(tf.float32)
      input2 = tf.placeholder(tf.float32)
      output = tf.mul(input1, input2)
      with tf.Session() as sess:
          print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))
    复制代码

以上所述就是小编给大家介绍的《TensorFlow基础及MNIST数据集逻辑回归应用实践-大数据ML样本集案例实战》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

系统程序员成长计划

系统程序员成长计划

李先静 / 人民邮电出版社 / 2010-04 / 45.00

在学习程序开发的过程中,你是否总是为自己遇到的一些问题头疼不已,你是否还在为写不出代码而心急如焚?作为软件开发人员,你是否时时为自己如何成为一名合格的程序员而困惑不已?没关系,本书将为你排忧解难。 这是一本介绍系统程序开发方法的书。书中结合内容详尽的代码细致讲述了不少底层程序开发基础知识,并在逐步深入的过程中介绍了一些简单实用的应用程序,最后还讲述了一些软件工程方面的内容,内容全面,语言生动......一起来看看 《系统程序员成长计划》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器